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Introduction

Context and motivations

Context and motivations :

e XVAs are a generic name for X-valuation adjustments which gained a lot of
interest since the global financial crisis of 2008.

e XVAs are linked with high computational costs due to a a nested Monte Carlo
structure in the pricing formulas.

e Banking and Insurance industries are looking for efficient numerical methods
to manage their risks associated with XVAs within an acceptable computation
time.
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Introduction

Goal of this presentation

Objectives :

e Implement new numerical methods based on supervised learning algorithms
to overcome the principal weaknesses of the classical Monte-Carlo approach
in the computation of XVAs.

e Show the potential applications of these numerical methods in finance and
actuarial fields.
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Introduction
XVA Overview

Table: Different Types of XVA

XVA valuation adjustment Expected Cost of the Bank

CVA Credit Valuation Adjustment Client Default Losses

DVA Debt Valuation Adjustment Bank Default Losses

FVA | Funding Valuation Adjustment funding expenses for variation margin
MVA | Margin Valuation Adjustment funding expenses for initial margin
KVA | Capital Valuation Adjustment | Remuneration of Shareholder capital at risk

e CVA and DVA refer to credit valuation adjustments. When both quantities are
computed, we use the term BCVA as Bilateral Credit Valuation Adjustment.

e FVA and MVA refer to funding valuation adjustments and are still under debate in
the industry in how they should be evaluated.

e KVA refers to the capital valuation adjustment and highly depends in the
institution’s policy.
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Mathematical Framework for XVAs
Unilateral CVA Framework

Assuming a probability space (2, F) with Q a risk-neutral probability measure associated
with a numeraire B = (B;)¢=0 with dynamics dB; = B;rdt with r; the short rate, the
CVA can be computed as follows :

+ B
B.c

)
B
PV sG] = (1 - ROEC[H e pecr (Vi)

S

CVA; = (1 — RC)EQ[J 1G], (1)
t
with :
e R¢ the Recovery Rate for the counterparty C such as LGD =1 — R€.
o V; the product/portfolio value at time t such that (V;)" refers to counterparty
Exposure.
e T the maturity of the product/portfolio.
o 7€ the time default of the counterparty C and H; = 1 cg,.
e F; the filtration associated with the market information preventing the information
of the default time of the counterparty and H¢ = o ((Hu)u<t)-
e G defined as G; = F; v H: the lowest filtration making 7€ a stopping time.

Remark
The computation of CVA involves the computation of the portfolio value at any time
which in the most common case needs to be performed using a numerical method like a

Monte — Carlo procedure resulting in a Nested Monte-Carlo.
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Mathematical Framework for XVAs
Unilateral CVA Framework

By noting G(t) = P(7€ > t) and by supposing that 7¢ admits a density probability
function, we can rewrite CVAg as follows :

CVAs — —(1 - R) JT e M) - ac(). @)

0 B:

Under independance between exposure value of the portfolio and default time, equation
(2) can be rewritten over a timegrid 0 =ty <t; <... <ty =T by:

CVAo ~ —(1— RO 2 EO[%](G(QH) — 6(t)). 3)

o EQ[%] is called Expected Positive Exposure and is noted EPE(t).

Remark

We recover the 3 components of the credit risk in the CVAo expression with the the Loss
Given Default (LGD) , the Probability of Default (PD) and the Exposure at Default
(EAD).

=== - ~7
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Mathematical Framework for XVAs
MVA Framework

The Margin Valuation Adjustment is expected to capture the cost associated with the
initial margin in collateralized contracts and can be defined as follows with DIM the

dynamic initial margin :
DIM(t) = EQ[Bi/M(t)m]. 4)
t

MVA, = LT f(s)DIM(s)ds. (5)

with :
e IM(t) the initial margin to be posted at t calculated according the recommandations
of the regulator International Swaps and Derivatives Association which is seen as a
VaR calculation over the porfolio value (MtM).

e f a funding spread between the collateralized rate and the risk free rate.

MVA, can therefore be approximated over a timegrid 0 =ty < t; < ... <ty =T by :

N—1
MVA, ~ Z f(t,‘)DIM(t,‘)(t,‘+1 — t,‘). (6)
i=0
AC“I&ES
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EE Profile Computation

An Application to Equity Products

An application under the B — S model with the following dynamics :

dS: = Si(rdt + cdW;), SoeRj}.

EE Exposure of a Call EE Exposure of a Forward

10 10.0 4 — EPE Forward
— ENE Forward

— EpECall
— ENECall

EE Exposure
EE Exposure

Time Time

Figure: EE Profile of a Call (left) and a forward (right) in the B — S model with the following
parameters : (Sp = 100, K = 100, r = 0 and o = 0.25)

e For European derivatives, it can be shown that EPE(t) = Vo, Vte [0, T].

e For forward contracts, an analytic formula can be derived in the B — S model. sorofhas
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EE Profile Computation
An Application to an IRS

An application under the Hull & White model with the following dynamics :

dre = k(0(t) — re)dt + odW;, neR.

Value of a swap Expected Positive Profile of a Swap

3000
|
2000

1000

Swap Value(t)

~2000

3000

000

Figure: Value of an IRS and Associated EPE profile under Hull & White model with the following
parameters : (k = 0.5, ¢ = 0.06, rp = 0.01 with fictious initial zero-coupon bond curve given by
B(0, t) = e~"0t) with 50000 M-C simulations

e The sawtooth profile for IRS can be explained due to the payment dates of the IRS
which create this EPE profile. ictuhes
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EE Profile Computation

An Application to bermudan options using the LSMC algorithm

Bermudan Put Option EPE Calculation

EPE(t)

EPE(t) for Bermudan
EPE() for European with LSMC
~=- True Value of European Put

00 02 04 06 08 10
t

Figure: Calculation of the EPE profile of a bermudan put under BS-Model with the following
parameters : (Sp = 100, K =100, r = 0.04,0 = 0.2, T = 1 and N = 13) with NMS = 100000

e We can see that the exposure at tp = 0 of the Bermudan is higher than her european
counterparty which is expected due to the potential early exercise of the product.

e We also see that the profile decreases over time compared with the European one
which is also normal as during the lifetime of the product, the buyer of the option
can exerce the option, the exposure becoming 0 on the residual time.

Actudkes

Samy Mekkaoui (ENSAE Paris ) Soutenance Mémoire IA 6 Novembre 2024 13 /54



Contents

© Review of Machine and Deep Learning Algorithms for XVA Computations

Samy Mekkaoui (ENSAE Paris ) Soutenance Mémoire 1A



Supervised Learning Methods for XVAs

In the following, we will introduce 2 supervised learning methods for XVAs computations
and we will discuss for each how they can be helpful for theses computations. For this,
we will consider the following methods :

o Gaussian Process Regression which is is a machine learning method which will help
us to calculate efficiently prices surfaces for Markovian processes and therefore can
be applied for exposure profile computation and efficient CVAy to avoid the Nested
Monte-Carlo procedure.

e Deep Conditional Expectation Solver which is a deep learning method which will
help us to compute MVAq in an efficient manner by using the conditional
expectation representation as a minimization problem.

Remark

An other deep learning algorithm called Deep XVA Solver has been studied and
presented in the dissertation. It is a deep learning method based on the Deep BSDE
Solver introduced in [1] and which we illustrated for high dimensionnal computation of
exposure profile and associated CVAy.

Actulhes
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Gaussian Process Regression

Mathematical Foundations

Definition

We say that a function f : R? — R is distributed by a GPR(u, Kx x) if ¥ne N*
YV X1,X2,...,Xn € R9, we have that :

[F(x1), F(x2)y .o, F(xn)] ~ N (ux, Kx,x)

with u € R" and Kx, x € M,(R) symetric semi-definite positive matrix with general term
defined by :

i = p(xi)
Kxx(i,j) = K(xi, X))
W
Our Aim :
o Use of GPR to learn efficiently surface prices with training data (Xj, Yi)ief;n] with
N beeing really low (X representing the Markov State and Y the price) at different
times over the lifetime of the product/portfolio to avoid a Nested Monte-Carlo
Procedure.
e Combine the GPR methodology with a classic simple Monte — Carlo to calculate
CVA() Actulhes
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Gaussian Process Regression
GPR to learn a GMMB price surface

We present the case of a GMMB contract with payoff given by :

l-r>T max(ST, K)

where :
e 7 denotes the mortality date of the insured starting from 0 at age x.
e St is the value of the underlying stock at time T with Sp € R¥.
e K is a minimum guarantee for the insured.

We assume the following dynamics for the underlying stock and the mortality rate A for
someone aged of x at t = 0:

dS: = Si(rdt + odW}),
dAe = cAedt + E/AedW?, (7)
d < WH W? >.= pdt.
The fair value of the GMMB contract is defined as t = 0 by :

PSMME — EQ[e™" "1, 7 max (ST, K)]. £8des
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Gaussian Process Regression
GPR to learn a GMMB price surface

— emor

— Bact
— o

— Bxact — Emor

Figure: 1000 vs 100000 MC simulations to learn the price surface Pé;MMB as a function of
(Mo, So) under the model (7) with the parameters : (c = 7,50.1072, ¢ = 5,97.107%,r = 0.02 el
c=02p=-07 K=1)
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Gaussian Process Regression
The GP — MC method for CVA; computation

Using M samples of Monte-Carlo, CVAy from equation 3 can be approximated as :

cy M N-1 oyt
cvay~ AR5 YER) (G(00) - 61 (©)

In a standard Nested-Monte Carlo framework, the quantity V(t,-,XlJ_-)+ should be itself

calculated using a MC procedure. The goal of the GPR will be to learn price surfaces at
different dates t; and evalute efficiently the quantity V/(t;, Xt,.-)Jr to save one level of the

Nested Monte-Carlo. Our GPR — MC estimator can therefore be defined as :

VA, = fNZI [Vl YBf =X Gy -6y (10)
j=1i=0 ti

Remark
The calculation of E[Vi|X, Y, x* = X,j] at each time-date (ti)icfo.ny i performed using
GPR. Therefore, we will have to train as much GPR as number of timesteps in the

discretization of [0, T|. As we combined 2 numerical methods, we can take advantage of
each of them. GPR will provide an error on EPE profile and MC an error on CVAy.
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Gaussian Process Regression
An application to an Equity Portfolio of European Options

Expected Exposure on the Second Portfolio

Error in EPE(t) using the GP - MC methodology

— EPE Exact
— EPEGP
— ENE Exact
— ENEGP

0.0010

EE(D)

0.0005

i 0.0000

— Error in EPE
Confidence Zone

-0.0005

—0.0010

time

Figure: Expected Exposure Profile on a Portfolio of 10 long positions in European Call and 5 long
positions in European Put using the GP — MC methodology with 10 timesteps discretization for

the GPR

Table: CVAp using the GP — MC methodology on the Second equity Portfolio with M = 10000

simulations

True Value

GP — MC estimation

Upper Bound | Lower Bound

CVAp 2 | 2.2333603

2.2333624

2.2654195 2.2013054
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Gaussian Process Regression
An application to an Equity Portfolio of European Options

Expected Exposure on the Third Portfolio

Error in EPE(t) using the GP - MC methodology

— EPE Exact
5 | — EpEGP
— ENE Exact
— ENEGP

=0)

00004

00002
o000
! ~0.0002

-0.0004

~0.0006

— Error in EPE
Confidence Zone

time.

Figure: Expected Exposure Profile on a portfolio of 5 long positions in calls and 5 short positions
in puts using the GP — MC methodology with 10 timesteps discretization for the GPR

Table: CVAq using the GP — MC methodology on the Third equity Portfolio with M = 10000

simulations

True Value

GP — MC estimation

Upper Bound

Lower Bound

CVA, | 0.6092085

0.6092076

0.61602855

0.6023867
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Gaussian Process Regression

An application to a Swap Portfolio

We give below the numerical results for a 1-swap portfolio :

=0)

Expected Exposure on a 1-Swap Portfolio

1e—s Error in ENE(t) using the GP - MC methodology
4

— EPE Exact
— EPEGP
— ENE Exact
— ENEGP

Error in ENE(t)

— Errorin ENE
Confidence Zone

Figure: Expected Exposure Profile of a single swap using the GP — MC methodology with 50
timesteps discretization for the GPR

Table: CVAq using the GP — MC methodology on the first swap Portfolio with M = 10000

simulations

True Value

GP — MC estimation

Upper Bound

Lower Bound

CVAo

2.6152343

2.6152344

2.6974686

2.5330003
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Gaussian Process Regression
Key Takeaways of the method

Pros :
o Necessitate a really low number of training samples (X, Y;);en# to learn the
price surface as a function of the Markov state X.
e Provide a really accurate estimation of the EE profile with a confidence
interval
e The error in the CVAy computation is almost fully based on the simple Monte-
Carlo loop and not in the GPR algorithm.

Cons :

e The learning process can be difficult when the output labels (Y;);cn# are noisy
which can lead to an inefficient learning algorithm.

Actulhes
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Deep Conditional Expectation Solver

Mathematical Foundations

The method is based on the following proposition :
Proposition
Consider 2 random variables Y and X such as E[Y|X] is in L?>(X). Then, E[Y|X] is the

unique solution to the following optimization problem :

argmingc2 ) E[(Y — f(X))?]

As the space LZ(X) leads to an infinite dimension problem, we will replace this space by
the space of functions generated by Neural Networks parametrized by a vector 6 of finite
dimension denoted by . The problem can therefore be rewritten by

argmingE[(Y — £f (X))2]

From the definition of the problem, we see that the appropriate loss to consider is the
MSE loss and then we can train the neural network by sampling ((Xi, Y7))ie[1,n-

Actulhes
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Deep Conditional Expectation Solver
An MVA Computation

Based on [6] and following the expression of MVA given by equation (6), the idea is to
consider a vector DIM € R¥*! such as DIM = (DIM(ty), ..., DIM(ty)). According to
the equation 4, we can therefore write the vector DIM as the following :

DIM =(EC[IM(to)|Fo],. .., E[e~ 1" #IM(tw)| Fo])

Now by considering that Fg is characterized by a vector X of parameters we then know
that we can rewrite the vector DIM using deterministic functions (Fy)iefo,n)- If we note
F=(Fy,..., Fty), we then have :

DIM = (E°[IM(t)|Fo],. .., Ee” 1" IM(tn)|Fo]) = (Fip(X), ..., Fey (X)) = F(X) (11)

We then now aim to approximate F by using the subspace of Neural Networks. Writing
t,
down IM=(IM(t), ..., e %o =% IM(ty)), we have also the following representation for

DIM :
DIM = E°[IM| 7] (12)

We can aim to learn the vector DIM by using Neural Networks by using samples
(Xf7 (IMi))ie[[l;N]]- Actulhes
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Deep Conditional Expectation Solver

Neural Network settings

We illustrate the methodology with the calculation of DIM for an interest rate swap in

the G2 + + model which is parametrized by 6 parameters beeing our initial vector X.

The outputs IM are computed using the ISDA methodology given in [9].

Table: Neural Network Architecture for the DIM Calculation in the G2 + + model

Number of Inputs 6
Number of Outputs 101

Number of Hidden Layers 3
Number of Neurons per Layer 256

Activation Function

#(x) = x* (RelLu)

Weight Initialization

Xavier/Goriot

Gradient Descent Algorithm

Adam Optimizer (learning rate = 0.001)

Table: Lower and Upper Bounds for market state variable in the G2 + + model

X Kx Ox Ky oy p ro
min(X) | 2.4% | 0.5% | 3% | 0.5% | —0.999 | —3%
max(X) | 12% | 2.5% | 15% | 2.5% | 0.999 6%
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Deep Conditional Expectation Solver
An MVA Computation

Evolution of DIM for 1 Interest Rate Swap with Noisy Labels Comparaison of NN Accuracy vs Nested MC Estimation

NN Approximation
— An Nested MC Estimation

DIM(t)

Time t

Figure: Noisy Labels for the following set of parameters (kx = 0.10 , ox = 0.02, x, = 0.12,
oy =0.02, p = —0.3 and rg = 0.01) and NN accuracy with the Nested Monte-Carlo Procedure

e We can see that the neural network is fed with samples from the left figure showing
that from noisy labels, he is able to reproduce a form which is really similar to the
ouput given from the Nested MC Procedure. The MSE Loss is given by 6.28.107>.

o We see a sawtooth behaviour which is expected due to the payment cashflows of the
swap we considered and with the initial margin beeing 0 at terminal date which is
T =6Y here. Actudkes
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Deep Conditional Expectation Solver
Key Takeaways of the method

Pros :
e The neural network doesn’t require DIM output labels but only /M which
helps to reduce the computational cost by computing only noisy labels.

e Once trained, the neural network provides immediate DIM profiles whereas
the nested Monte-Carlo took more than half an hour for a single computation
for a given choice of parameters.

Cons :

e The methodology doesn't require the estimation of DIM output labels to learn
efficiently the DIM profile which helps to overcome the nested Monte-Carlo.

e The choice of the hyperparameters of the neural network are highly subjective
and several choice of architectures could lead to better results in the
computation of the DIM profile. There is still no rule to make a good choice
of architecture.
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Conclusion
Global conclusion on the internship topic about XVAs

e Review of the mathematical framework for XVAs, mainly CVA, FVA and MVA and
the computational challenged associated with the computations of theses XVAs.

e Application of EE profile and CVA computation for classic products and study of the
Wrong Way Risk impact on the EE profile.

e Computation of EE profile for some Bermudan Options using the Least Square
Monte Carlo method and study of the algorithm efficiency for exposure calculation.

e Study of the GPR — MC methodology for the fast computation of EPE profile and
CVAq computation to avoid the Nested-Monte-Carlo procedure showing great
accuracy on the EE profile and on the CVAy, computation.

e Study of the Deep Conditional Learning algorithm for MVA, computation to avoid
the Nested Monte-Carlo procedure showing great accuracy with once neural network
trained immediate computations.

e Study of the Deep BSDE Solver for a computation of high-dimensional EE profile
and XVA, computations deriving from a PDE representation of XVAs.

e Study of a dynamic hedging strategy of the counterparty exposure based on the
Mean-Variance Minimization quadratic hedging method with analytic formulas in

a simple framework.
ACTU&ES
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Conclusion
Potential Further Research

e The financial industry also seeks to calculate in addition to the average exposure
profile EE the exposure profile at a given percentile o defined for a level o € [0.1]
given by:

PFES = inf{y : P(V))" <y) < a}

This complementary measure echoes the definition of Value-at-Risk and recently
supervised learning methods have emerged for the calculation of these risk measures
based on a dual representation of the Value -at-Risk and Expected Shortfall as
minimization problems as introduced in [8] from Cano, Crépey, Gobet, Nguyen and
Saadeddine .

e Use of supervised learning algorithms based on neural networks for the valuation of
high-dimensional Bermudan options as introduced in [11] from Becker, Cheridito and
Jentzen where the optimal exercise time is learned on a sample of data.

e Use of deep neural networks for the valuation of life insurance options indexed to
stocks, in particular as introduced in the article [14] Pricing equity-linked life
insurance contracts with multiple risk factors by neural networks from Barigou and
Delong.

AC"II&ES

Samy Mekkaoui (ENSAE Paris ) Soutenance Mémoire IA 6 Novembre 2024 31/54



)

q
|

References

E.Weinan, J.Han, A.Jentzen, 2017, Deep learning-based numerical methods for
high-dimensional parabolic partial differential equations and backward stochastic
differential equations, Springer, Commun. Math. Stat. 5, 349-380.

A.Gnoatto, A.Picarelli, C.Reisinger, 2022, Deep XVA Solver — A Neural Network Based
CounterParty Credit Risk Management Framework, SIAM, Volume 14.

C.Ceci, K.Colanery, R.Frey, V.Kéck, 2019, Value Adjustments And Dynamic Hedging of
Reinsurance Counterparty Risk, SIAM, Volume 11.

D.Brigo, F.Vrins, 2016, Disentangling wrong-way risk: pricing CVA via change of
measures and drift adjustment, European Journal of Operational Research, Volume 269,
1154-1164.

S.Crépey, M.F.Dixon, 2019, Gaussian Process Regression for Derivative Portfolio
modelling and Application to CVA Computations, arXiv : 1901.11081.

J.P. Villarino, A.Leitao, 2024, On Deep Learning for computing the Dynamic Initial
Margin and Margin Value Adjustment, arXiv : 2407.16435.

F.Longstaff, E.Schwartz, 2001, Valuing American options by simulation: a simple
least-squares approach, Review of Financial Studies, 113-147. a

Samy Mekkaoui (ENSAE Paris ) Soutenance Mémoire 1A 6 Novembre 2024 32/54



References

J.D.B Cano, S.Crépey, E.Gobet, H-D.Nguyen, B.Saadeddine, 2022, Learning
Value-at-Risk and Expected Shortfall, arXiv : 2209.06476.

ISDA SIMM Methodology version 2.6
D.Brigo, F.Mercurio, 2001, Interest Rate Models — Theory and Practice, Springer.

S.Becker, P.Cheridito, A.Jentzen, 2020, Deep Optimal Stopping, Journal of Machine
Learning Research.

K.Andersson, C.W.QOosterlee, 2020, A deep learning approach for computations of
exposure profiles for high-dimensional Bermudan options Applied Mathematics and
Computation, Volume 408, 126332.

P. Glasserman, 2003, Monte-Carlo methods in financial engineering, Springer.

K.Barigou, L.Delong, 2021, Pricing equity-linked life insurance contracts with multiple
risk factors by neural networks, Journal of Computational and Applied Mathematics,
Volume 404, 113922.

K.Hornik, 1988, Multilayer feedforward networks are universal approximators, Neural
Networks, Volume 2 Issue 5, 359-366. o

Samy Mekkaoui (ENSAE Paris ) Soutenance Mémoire 1A 6 Novembre 2024 33/54



Taking account the Wrong Way Risk

The Cox Setup

Let's return to equation 2. If we no longer assume independance between the value of
the exposure at default and the time at default, then we must be able to manage the

term EQ[%V = t]. To do this and based on [4] considering the process
S = (St)i=0 = Q[7¢ > t|F:] called F-supermartingale of Azéma, we can show that :

CVA; = —(1 — RC)EQ[JT (‘;%Vdst]

0 t
If we suppose that the process S takes the following form :
Si—e §6 Asds

with A = (At)¢efo,7] @ positive stochastic process and F-adapted. Then we can write
CVAq as follows :

oy [T pep (V)"
CVAo— —(1—R )J e M a6 (1) (13)
0 t
With :
o G(t)= e’Stg (99 and EQ[S,] = G(t) called calibration equation
L] Et = sctulhes

h(t)G(t)
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Taking into account the Wrong Way Risk
The Cox Setup

Basé sur [4] et I'équation 13, on va calculer la CVAg en calculant sur une grille temporelle
O=th<ti<...<ty=T CVAy comme suit :

cva ~ Z e e (6 6) - 6(8) (14

i

Dans les exemples portant sur des prodwts Equity, on supposera le modéle suivant :

dS; = Si(rdt + cdW}"), SpeR}
dAe = KM0Y — A)dt + o™/ AedW?2, X € RS
d < W} W? >.= pdt
Dans le cas des swaps de taux, on supposera un modéle Hull & White :
dre = (0(t) — kre)dt + odW,, reR
dAe = K20 = A)dt + o™/ AedWZ, Ao € RS
d < W} W2 >.= pdt

e Le processus intensité de défault A est supposé suivre un modele CIR.

N N . R
e Le paramétre p capture le parameétre de Wrong Way Risk o
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CVA under Wrong Way Risk

Application to Equity products

EPE Profile for a Call Option under B-S Model

EPE Profile for a Forward Contract under B-S Model
p-08 0.9
. p=
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Figure: EPE Profile of Equity products under WWR with the following parameters ( S = 100,
K =100, r =0.03, 0 = 0.2, \g = 0* = ¢* = 0.12 and x* = 0.35) with NMC = 50000

e We can see the impact of the Wrong Way Risk with the parameter p in the expected

postive exposure profile as it globally increases the profile over time making the
overall CVA higher.
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CVA under Wrong Way Risk

Application to an IRS

EE Profile for various p CVA as a function of rho
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Figure: EPE Profile of an IRS under WWR with the following parameters ( rn =0.01, kK = 0.5,
0 =0.03, \g = 0> = 0* =0.12 and k* = 0.35 and R® = 0.4) with NMC = 50000

e We also observe that the impact of the Wrong Way Risk on the expected positive
exposure profile of a swap is really important and the impact on the CVA cannot be
neglected
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The Wrong Way Measure

Mathematical Idea

L'idée de la méthode présentée dans [4] consiste en un changement de mesure et dans un
ajustement de drift pour pouvoir calculer CVAy d’'une maniére analogue a ?7?. Pour cela,
on définit le processus (CF’ )sefo,t] de la maniére suivante :

Bs

Ft
clt=Ee° (5

1
AeSe| Fs] = BSEQ[E)\tSt|]-‘S] (15)
t

Dés lors, en notant (M£)scjo,q = (E9[ 1t AtSt|Fs])sefo,e], ce processus définit une

. . P e ACTEt

F-martingale positive et on peut alors définir une mesure de probabilité Q™" telle que
F,t

dQ<”

0 = 7! avec Z! défini par :
Fs
p_ e w S "
TG My EQ[Rx]
op (Vo)™ cFe Gt cF op &t
BY &) =E" [ &(V) 1 =B T[(V)TIEY[ 5] (17)
t G t
sctulhes
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The Wrong Way Measure

Mathematical Idea

Si on suppose I'indépendance entre le taux sans risquetet le crédit, on peut écrire en
notant que E?[¢] = 1 et E?[F] = B'(0,¢) = E¥[e™ %] :

CVA=—(1-R) JT ES[(V)*]B7(0, £)dG(z) (18)

On a donc une expression similaire & ?7 mais on doit spécifier la dynamique de (V;)*
sous la nouvelle mesure C”>t. Pour se faire, on va supposer que la dynamique de V; sous
Q est donnée par (en notant W,” un brownien sous Q ) :

dV; = pedt + ordW,’ (19)

Par le théoréme de Girsanov, on peut alors montrer que en notant WY un mouvement
. Ft s .
brownien sous Q¢ " défini par :

WY = w,’ —f dW", (InM*)y, = W,” —J dW", In(CT*)),
0 0
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The Wrong Way Measure

Mathematical Idea

. F,t L,
La dynamique de V; sous Q¢ est alors donnée par :

dVs = (us + 0%)ds + osdW,” (20)

Avec 0 I'ajustement de drift dont I'expression est donnée par :
0tds = osd(W" In(CT"))s
Si on suppose des structures affines pour les processus B*(s, t) = E?[e~ ¥ Audi| 71 et
B'(s,t) = EQ[e’Sz | 7], c'est a dire en notant :
B (s, t) = E®[e SN F,] = AMN(s, r)e 0 (0
Br(s7 t) _ EQ[e— it rudU|J—_-s] _ Ar(S, t)e_D’(s,t)rs

On peut en déduire la forme explicite de I'ajustement de drift 6 (cf [4])
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The Wrong Way Measure

Drift Adjustment

A
A/\ (57 t) oD a(ts,t)

AN (S, t) 6D>(‘9(t5,t) e — OAX (s,t)

ot

0t = plosol( D*(s, t)) (21)

A ce stade, on voit que I'ajustement de drift a toujours un comportement stochastique de
part le terme A;. Dans [4], ils proposent 2 approximations déterministes :

o Remplacer ); dans 21 par sa valeur moyenne X(s) = E9[\]
e Remplacer As par 21 par le taux de hasard h(s)

lIs justifient la connexion entre les 2 approximations par le fait que si on suppose que
Cov®[As, Si] = o(EQ[S:]), alors on a :
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The Wrong Way Measure

Swap Profile

On va supposer une dynamique de la forme suivante pour la valeur du portefeuille :

dV, = (v(T —s) — T‘f )ds + vdW,)’

Monte Carlo 2D Approximation of EPE

Figure: Comparaison of swap exposure profile between 2D Monte-Carlo and the Drift Adjustment
methods (Parameters used : T = 15Y, yp = h = 0.30, v = 0.001, v = 0.08)
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The Wrong Way Measure

Forward Profile

On va supposer une dynamique de la forme suivante pour la valeur du portefeuille :

v
dV. = vdW,
Evolution of EPE for a CIR++ Model : Drift Adjustment Monte Carlo 2D Approximation of EPE
008{—— P=-08
0074 P=038

3
Time t

Figure: Comparaison of forward exposure profile between 2D Monte-Carlo and the Drift
Adjustment methods (Parameters used : T = 10Y, yp = h = 0.15 and v = 0.08 )
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Deep BSDE Solver

Mathematical foundations

Proposition

Let’s considerer the following FBSDE with classic assumptions for existence and unicity
of X and (Y, Z)

t t
Xe = x + f b(s, Xs)ds + f o(s, Xs) TdW?2
0 0

. (23)

Vo= g(xn) + |

t

;
f(s, Xs, Ys, Zs)ds — J zldw?l

t

Let's consider the semilinear parabolic PDE of which u : [0, T] x RY— > R is solution :

(0c + L)u(t,x) + F(t,x, u(t,x), 0" (t,x)Deu(t,x)) =0 V(t,x)e [0, T[xR

24
u(T,x) = g(x) VYxeR’ (24)

where the operation L is the one of the diffusion that is to say :
L(u)(t,x) = %Tr(aaT(t, x)D2u(t, x)) + {b(t,x), Deu(t,x)) (25)

Processes (Y: = u(t, X¢))eefo,7] and (Z: = o7 (t, Xe) Dxu(t, X¢))ee[o,7] are solution to 23
v
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Deep BSDE Solver

Mathematical foundation

The reformulation of the problem in terms of FBSDE is related to the following
stochastic optimal control problem :

min)/:(zt>te[0,T] Ellg(Xr) - Y7y"Z|2] (26)
where :
o Xe=x+§b(s,Xs)ds + §; o(s, Xs) T dW
o Y =y —( (s, Xe, YZ, Z)ds + () Zed W

The idea of the Deep BSDE is to approximate at each time step n the control process Z,
by using a FFNN by the fact that in the Markovian Setting Z;, is of the form ¢,(X:,). As
we also aim to learn the optimal parameter y from the stochastic control problem, we
will set it y approximated by £ as a trainable parameter of the neural network which will
be optimised during the learning procedure.
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Deep BSDE Solver

Mathematical Foundation

Let's denote by 6 a vector associated to a specified architecture of a neural network. For
sake of simplicity, we will assume that each neural network at each time step has the
same structure. Therefore, we can introduce a family of neural networks (qﬁg)ng[o,,\,]
valued from R? to RY such as by defining Z,_?n = ¢9(Xs,), we can define the following
discretisation scheme :

YE’G = th,’e - h(t,”th, Yti’ea Zg’)At + (Zg,)T(anH - an)7 YO&Q = f (27)

tht1

Therefore, the global minimization problem becomes :

ming oE[(g(X7) — Y7*)’] (28)
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Deep BSDE Solver

Application to exposure calculation and PDE for CVA

Supposing that Q(7" > t|F;) = e~ A5 4nd Q(TE > t|F) = e %259 CVA and FVA
can be rewritten as follows :

-
CVA = (1— RC)EQ[f e Rl EAT XD () F\C | ]

t

According to Feymann-Kac formula, CVA can be rewritten as the solution to the
following PDE : V(t,x) € [0, T[xQ

0:p A (t, %) + LE(t,x) — (re + AF + A (8, x) + (1 — RO)(Ve)TAf =0

“(T,.) =0
we then can use the Deep BSDE Solver by setting :
o f(t,Xe, Yo, Ze) = (1 = ROA (V)T — (re + Af + A Vs
e g(X7)=0
AC"II&
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Deep XVA Solver

Application to a Basket Call option on 100 assets

We consider the case of a Basket call option on d = 100 assets with payoff given by

g(Sh,...,5%) = (X4, Sk —dK)*

EE Profile for a Basket Call option an 100 assets

-~ DEPE = exact solution

” —— DEPE = deep solver approximation
=== DNPE = exact solution

—— DNPE = deep solver approximation

Figure: Exposure Calculation of a Basket Option on d = 100 assets under B-S with the following
parameters : (Sp = 100 ,K =100 ,r = 0.01 ,0 = 0.25, p = 0)

Table: CVAp computation using Deep BSDE Solver with the following parameters : (RC =0.3,
M =001,A¢=0.1,s3=004ands =0)

True value

Deep XVA Solver

Upper Bound

Lower Bound

CVA 0.8407

0.8460

0.8567

0.8348
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A dynamic Hedging Strategy

The Mean-Variance Hedging Framework

Based on [3], we will aim to find an investement strategy in a CDS to hedge the
counterparty exposure. The payment streams are defined as:

C: = RP°H, — gft(l — Hy)du (29)
0

With :
e The first term refers to the payment at default

e The second term refers to the premium payment with a supposed continuous spread
£E>0

The present value of the future payments of the CDS is given by :

-
D: = E9[ J e %% 4C, |G (30)
t
From that, we can define the discounted gain process CDS = (CDS;)te[o,1] as :

t t u
CDS, = e ho"s®p, 1 f e Yondqgc,
0 icrilkes
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A dynamic Hedging Strategy

The Mean-Variance Hedging Framework

We now dtefine a self-financing portfolio strategy if the discounted value of the portfolio
Ve = e Jorsds VE with ¢ = (€9, &) defines respectively the position in cash and in the
CDS, can be rewritten as :
. t
V= Vi [ gd(cos)., teloT) (31)
0
The objective is now to minimize the following quantity which will be defined as the
tracking error et at terminal date T
Q T red: + T 2
minye ety o E L€ 8 P EL = R)(Ve) T Lear — (V5 +L £dCDS,))*]  (32)

To find the solution to the problem, the proof is based on the Féllmer-Schweizer
decomposition
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A dynamic Hedging Strategy

Illustration for a Stop-Loss contract in the reinsurance market

For the numerical illustration, we will suppose the following modeling :

dS: = Si(rdt + cdW}), Soe R}
dAe = b(Ae)dt + o(Ae) (pdW} + /1 — p2dW?), o€ R}

CVAy as a function of p for different y CVA as a function of y for different p

CVAo forp = 0
14 14 CVAyforp=1

CVAo Value fory = 0
CVAo Value fory = 0.5

0.0 0.2 0.4 0.6 0.8 10 000 005 010 015 020 025 030 035 040

Figure: Comparaison of 3 Hedging Strategies in order to hedge the CCR on a Call Option with
the following parameters : £ =02, A=02,r=0,0=04
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A dynamic Hedging Strategy

Illustration for a Stop-Loss contract in the reinsurance market

For the numerical illustration, we will suppose the following modeling :

dS: = Si(rdt + odW}), SoeRL
dXe = b(A)dt + o(\e) (pdW + /1 — p2dW7), o €R}

Proposition

It can be shown that the optimal strategy £ is such that when o(\;) = b(A:) = 0 :

Vs = CVA
- d<MCL, CD5>(» B (1 _ RC)(V(t, St)+ _ f'CVA(t_7 51’7)\ ))
& = d({CDS): (1= He) (RCPS — g(t, Mo)) O =

with by noting Ao = X :

(e, =€

t

e~ VN (REDS ) _ )1 F,] = REPS(1 — e MT-0) 4 %(e—)\(T—t) ~1)

;
FO(t, SNy = E9[ J e (NS (Y \du| F] (34)

t

o<
T mid = = Saneu@
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Mean Variance Hedging Framework
An Application to a Stop Loss Contract

st Plt of the hedging strategies o reisuranca countorparty axposura

ensity Plotor

Figure: Dynamic Hedging of the counterparty exposure on a Euopean Put in B — S model with
the following parameters : r =0, 0 = 0.1, A\ = 0.5 Sp = 100 , K = 100, £ = 0.5 and R€ =0

Table: Norm 2 of et in case of a European Put

No Hedging

Dynamic Hedging

E[(er)?] 50.84

0.52

Samy Mekkaoui (ENSAE Paris ) Soutenance Mémoire 1A

Actudkes

6 Novembre 2024 53 /54



Mean Variance Hedging Framework
An Application to a Forward Contract

Hist Plot of the hedging strategies of reinsurance counterparty exposure for a stop-loss contract,

= o Hedging
Dynamic Hedging

count

Tracking error er

Density Plot of the hedging strategies of reinsurance counterparty exposure for a stop-loss contract
040

— Notedging
Dynamic Hedging

£
Tracking eror &7

Figure: Comparaison of 3 Hedging Strategies in order to hedge the CCR on a Call Option with
the following parameters : £ =02, A=02,r=0,0=04

Table: Norm 2 of et in case of a Forward Contract

No Hedging

Dynamic Hedging

E[(er)?] | 283.65

2.90
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