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Introduction
Context and motivations

Context and motivations :
‚ XVAs are a generic name for X -valuation adjustments which gained a lot

of interest since the global financial crisis of 2008. They now represent a
significant part of the risk department of financial institutions.

‚ XVAs are linked with high computational costs due to a nested Monte-Carlo
structure in the pricing formulas.

‚ Banking and Insurance industries are looking for efficient numerical methods
to manage their risks associated with the computation of XVAs.
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Introduction
Goal of this presentation

Objectives :
‚ Implement new numerical methods based on supervised learning algorithms

to compute efficiently XVAs and overcome the principal weaknesses of the
Monte-Carlo approach.

‚ Show the potential applications of these numerical methods in finance and
actuarial fields.
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Introduction
XVA Overview

Table: Different Types of XVA

XVA valuation adjustment Expected Cost of the Bank
CVA Credit Valuation Adjustment Client Default Losses
DVA Debt Valuation Adjustment Bank Default Losses
FVA Funding Valuation Adjustment Funding expenses for variation margin
MVA Margin Valuation Adjustment Funding expenses for initial margin
KVA Capital Valuation Adjustment Remuneration of Shareholder capital at risk

‚ CVA and DVA refer to credit valuation adjustments. When both quantities are
computed, we use the term BCVA as Bilateral Credit Valuation Adjustment.

‚ FVA and MVA refer to funding valuation adjustments and are still under debate in
the industry in how they should be evaluated.

‚ KVA refers to the capital valuation adjustment and highly depends in the
institution’s policy.
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Mathematical Framework for XVAs
Unilateral CVA Framework

Assuming a probability space pΩ, Fq with Q a risk-neutral probability measure associated
with a numeraire B “ pBtqtě0 with dynamics dBt “ Btrtdt with rt the short rate, the
CVA can be computed as follows :

CVAt “ p1 ´ RC
qEQ

r1tďτC ďT pVτC q
` Bt

BτC
|Gts “ p1 ´ RC

qEQ
r

ż T

t

Bt

Bs
pVsq

`dHs |Gts. (1)

with :
‚ RC the recovery rate for the counterparty C such as LGD “ 1 ´ RC .
‚ Vt the product/portfolio value at time t such that pVtq

` refers to counterparty
Exposure.

‚ T the maturity of the product/portfolio.
‚ τC the time default of the counterparty C and Ht “ 1τC ďt .

Remark
The computation of CVA involves the computation of the portfolio value at any time
which in the most common case needs to be performed using a numerical method like a
Monte ´ Carlo procedure resulting in a nested Monte-Carlo.
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Mathematical Framework for XVAs
Unilateral CVA Framework

By noting Gptq “ QpτC
ą tq and by supposing that τC admits a density probability

function, we can rewrite CVA0 as follows :

CVA0 “ ´p1 ´ RC
q

ż T

0
EQ

r
pVtq

`

Bt
|τ “ tsdGptq. (2)

Under independance between exposure value of the portfolio and default time, equation
(2) can be rewritten over a timegrid 0 “ t0 ă t1 ă . . . ă tN “ T by :

CVA0 « ´p1 ´ RC
q

N´1
ÿ

i“0

EQ
r
pVti q

`

Bti
spGpti`1q ´ Gpti qq. (3)

‚ EQ
r

pVt q`

Bt
s is called Expected Positive Exposure and is noted EPEptq.

‚ EQ
r

pVt q´

Bt
s is called Expected Negative Exposure and is noted ENEptq.

Remark
We recover the 3 components of the credit risk in the CVA0 expression with the the Loss
Given Default (LGD) , the Probability of Default (PD) and the Exposure at Default
(EAD).

Samy Mekkaoui (ENSAE Paris) Oral Defense IA Dissertation 6 November 2024 8 / 31



Dr
af

t

Mathematical Framework for XVAs
MVA Framework

The Margin Valuation Adjustment is expected to capture the cost associated with the
deposit of an initial margin in collateralized contracts and can be defined as follows :

DIMptq “ EQ
r

1
Bt

IMptq|F0s. (4)

MVA0 “

ż T

0
f psqDIMpsqds. (5)

with :
‚ IMptq the initial margin to be posted at t calculated according to the

recommandations of the regulator International Swaps and Derivatives Association
(ISDA) which is seen as a VaR calculation over the portfolio value Vt .

‚ f a funding spread between the collateralized rate and the risk free rate.
MVA0 can therefore be approximated over a timegrid 0 “ t0 ă t1 ă . . . ă tN “ T by :

MVA0 «

N´1
ÿ

i“0

f pti qDIMpti qpti`1 ´ ti q. (6)
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EE Profile computation
An application to equity products

An application under the Black-Scholes (B ´ S) model with the following dynamics :

dSt “ Stprdt ` σdWtq, S0 P R`
˚ .

Figure: EPE and ENE profiles of a call (left) and a forward (right) in the B ´ S model with the
following parameters : (S0 “ 100, K “ 100, r “ 0 and σ “ 0.25)

‚ For European derivatives, it can be shown that EPEptq “ V0, @t P r0, T s .
‚ For forward contracts, an analytic formula can be derived in the B ´ S model.
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EE Profile computation
An application to an interest rate swap

An application under the Hull & White model with the following dynamics :

drt “ κpθptq ´ rtqdt ` σdWt , r0 P R.

Figure: Value of a swap on a notional of N “ 105 and associated EPE profile under Hull & White
model with the following parameters : (κ “ 0.5, σ “ 0.06, r0 “ 0.01 with fictious initial
zero-coupon bond curve given by Bp0, tq “ e´r0t) with 50000 M-C simulations

‚ The sawtooth profile for a swap can be explained due to the payment dates which
create this EPE profile.
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EE Profile computation
An application to a bermudan option using the Least Square Monte Carlo algorithm

Figure: Calculation of the EPE profile of a bermudan put under B ´ S model with the following
parameters : (S0 “ 100 , K “ 100 , r “ 0.04 , σ “ 0.2 , T “ 1 and N “ 13) with NMC “ 100000

‚ We can see that the exposure at t0 “ 0 of the Bermudan is higher than her european
counterparty which is expected due to the potential early exercise of the product.

‚ We also see that the profile decreases over time compared with the European one
which is also normal as during the lifetime of the product, the buyer of the option
can exerce the option, the exposure becoming 0 on the residual time.
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Supervised Learning Methods for XVAs

In the following, we will introduce 2 supervised learning methods for XVAs computations
and we will discuss for each how they can be helpful for theses computations. For this,
we will consider the following methods :

‚ Gaussian Process Regression, a machine learning (ML) method which will help us
to calculate efficiently prices surfaces for markovian processes. We will apply this
ML method for EE profile and efficient CVA0 computation to avoid the nested
Monte-Carlo procedure.

‚ Deep Conditional Expectation Solver, a deep learning method which will help us
to compute MVA0 in an efficient manner by using the conditional expectation
representation as a minimization problem.

Remark
An other deep learning algorithm called Deep XVA Solver has been studied and
presented in the dissertation. It is a deep learning method based on the Deep BSDE
Solver introduced in [1] and which we illustrated for high dimensionnal computation of
exposure profile and associated CVA0.
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Gaussian Process Regression
Mathematical Foundations

Definition
We say that a function f : Rd

Ñ R is distributed by a GPRpµ, KX ,X q if @n P N˚

@ x1, x2, . . . , xn P Rd , we have that :

rf px1q, f px2q, . . . , f pxnqs „ N pµX , KX ,X q

with µ P Rn and KX ,X P MnpRq symetric semi-definite positive matrix with general term
defined by :

µi “ µpxi q

KX ,X pi , jq “ Kpxi , xj q

Our Aim :
‚ Use of GPR to learn efficiently surface prices with training data pXi , Yi qiPrr1;Ns with

N beeing really low (X representing the Markov State and Y the price) at different
times over the lifetime of the product/portfolio to avoid a nested Monte-Carlo
procedure.

‚ Combine the GPR methodology with a classic simple Monte ´ Carlo to calculate
CVA0.
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Gaussian Process Regression
GPR to learn a GMMB price surface

We present the case of a Guaranteed Minimum Maturity Benefit (GMMB) contract with
payoff given by :

1τąT maxpST , Kq.

where :
‚ τ denotes the mortality date of the insured starting from 0 at age x.
‚ ST is the value of the underlying stock at time T with S0 P R˚

`.
‚ K is a minimum guarantee for the insured.

We assume the following dynamics for the underlying stock and the mortality rate λ for
someone aged of x at t “ 0:

dSt “ Stprdt ` σdW 1
t q,

dλt “ cλtdt ` ξ
a

λtdW 2
t , (7)

d ă W 1, W 2
ąt“ ρdt.

The fair value of the GMMB contract is defined as t “ 0 by :

PGMMB
0 pS0, λ0q “ EQ

re´rT
1τąT maxpST , Kqs. (8)
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Gaussian Process Regression
GPR to learn a GMMB price surface

Figure: 1000 vs 100000 MC simulations to learn the price surface PGMMB
0 as a function of

pλ0, S0q under the model (7) with the parameters : (c “ 7, 50.10´2, ξ “ 5, 97.10´4,r “ 0.02,
σ “ 0.2, ρ “ ´0.7, K “ 1)
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Gaussian Process Regression
The GP ´ MC method for CVA0 computation

Using M samples of Monte-Carlo, CVA0 from equation (3) can be approximated as :

CVA0 « ´
p1 ´ RC

q

M

M
ÿ

j“1

N´1
ÿ

i“0

V pti , X j
ti q

`

Bj
ti

pGpti`1q ´ Gpti qq (9)

In a standard nested Monte-Carlo framework, the quantity V pti , Xt j
i
q

` should be itself
calculated using a MC procedure. The goal of the GPR will be to learn price surfaces at
different dates ti and evaluate efficiently the quantity V pti , Xt j

i
q

` to save one level of the
nested Monte-Carlo. Our GPR ´ MC estimator can therefore be defined as :

ˆCVA0 “
p1 ´ RC

q

M

M
ÿ

j“1

N´1
ÿ

i“0

pErV˚|X , Y , x˚
“ X j

ti sq
`

Bj
ti

pGpti`1q ´ Gpti qq (10)

Remark
The calculation of ErV˚|X , Y , x˚

“ Xt j
i
s at each time-date pti qiPrr0;Nss is performed using

GPR. Therefore, we will have to train as much GPR as number of timesteps in the
discretization of r0, T s. As we combined 2 numerical methods, we can take advantage of
each of them. GPR will provide an error on EPE profile and MC an error on CVA0.
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Gaussian Process Regression
An application to an Equity Portfolio of European Options

Figure: Expected Exposure Profile on a Portfolio of 10 long positions in European Call and 5 long
positions in European Put using the GP ´ MC methodology with 10 timesteps discretization for
the GPR

Table: CVA0 using the GP ´ MC methodology on the Second equity Portfolio with M “ 10000
simulations

True Value GP ´ MC estimation Upper Bound Lower Bound
CVA0 2.2333603 2.2333624 2.2654195 2.2013054
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Gaussian Process Regression
An application to an Equity Portfolio of European Options

Figure: Expected Exposure Profile on a portfolio of 5 long positions in calls and 5 short positions
in puts using the GP ´ MC methodology with 10 timesteps discretization for the GPR

Table: CVA0 using the GP ´ MC methodology on the Third equity Portfolio with M “ 10000
simulations

True Value GP ´ MC estimation Upper Bound Lower Bound
CVA0 0.6092085 0.6092076 0.61602855 0.6023867
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Gaussian Process Regression
An application to a Swap Portfolio

We give below the numerical results for a 1-swap portfolio :

Figure: Expected Exposure Profile of a single swap using the GP ´ MC methodology with 50
timesteps discretization for the GPR

Table: CVA0 using the GP ´ MC methodology on the first swap Portfolio with M “ 10000
simulations

True Value GP ´ MC estimation Upper Bound Lower Bound
CVA0 2.6152343 2.6152344 2.6974686 2.5330003
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Gaussian Process Regression
Key Takeaways of the method

Pros :
‚ Require a really low number of training samples pXi , Yi qiPN˚ to learn the price

surface as a function of the Markov state X .
‚ Provide a really accurate estimation of the EE profile with a confidence

interval
‚ The error in the CVA0 computation is almost fully based on the simple Monte-

Carlo loop and not in the GPR algorithm.

Cons :
‚ The learning process can be difficult when the output labels pYi qiPN˚ are noisy

which can lead to an inefficient learning algorithm.
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Deep Conditional Expectation Solver
Mathematical Foundations

The method is based on the following proposition :

Proposition

Consider 2 random variables Y and X such as ErY |X s is in L2
pXq. Then, ErY |X s is the

unique solution to the following optimization problem :

argminf PL2pXqErpY ´ f pXqq
2
s

As the space L2
pXq leads to an infinite dimension problem, we will replace this space by

the space of functions generated by neural networks parametrized by a vector θ of finite
dimension denoted by f θ. The problem can therefore be rewritten by

argminθErpY ´ f θ
pXqq

2
s

From the definition of the problem, we see that the appropriate loss to consider is the
MSE loss and then we can train the neural network by sampling ppXi , Yi qqiPrr1;Nss.
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Deep Conditional Expectation Solver
Neural Network settings

We illustrate the methodology with the calculation of a vector DIM P RN`1 such as DIM
= pDIMpt0q, . . . , DIMptNqq. Following (4) and defining an appropriate IM vector, we
have DIM=EQ

rIM|F0s. We will therefore compute DIM for an interest rate swap in the
G2 ` ` model which is parametrized by 6 parameters beeing our initial vector X . The
outputs IM are computed using the ISDA methodology given in [9].

Table: Neural Network Architecture for the DIM calculation in the G2 ` ` model

Number of Inputs 6
Number of Outputs 101

Number of Hidden Layers 3
Number of Neurons per Layer 256

Activation Function ϕpxq “ x` (ReLu)
Weight Initialization Xavier/Goriot

Gradient Descent Algorithm Adam Optimizer (learning rate “ 0.001)

Table: Lower and Upper Bounds for market state variable in the G2 ` ` model

X κx σx κy σy ρ r0
min(X) 2.4% 0.5% 3% 0.5% ´0.999 ´3%
max(X) 12% 2.5% 15% 2.5% 0.999 6%
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Deep Conditional Expectation Solver
An MVA Computation

Figure: Noisy Labels for the following set of parameters (κx “ 0.10 , σx “ 0.02 , κy “ 0.12,
σy “ 0.02, ρ “ ´0.3 and r0 “ 0.03) and NN accuracy with the nested Monte-Carlo procedure

‚ We can see that the neural network is fed with samples from the left figure showing
that from noisy labels, he is able to reproduce a form which is really similar to the
ouput given from the nested M ´ C procedure. The MSE Loss is given by 6.28.10´5.

‚ We see a sawtooth behaviour which is expected due to the payment cashflows of the
swap we considered and with the initial margin beeing 0 at terminal date which is
T “ 6Y here.
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Deep Conditional Expectation Solver
Key Takeaways of the method

Pros :
‚ The neural network doesn’t require DIM output labels but only IM which

helps to reduce the computational cost by computing only noisy labels.
‚ Once trained, the neural network provides immediate DIM profiles whereas

the nested Monte-Carlo took more than half an hour for a single computation
for a given choice of parameters.

Cons :
‚ The methodology based on neural networks doesn’t provide an error control

unlike Monte-Carlo methods which makes the final output complicated to
interpret.

‚ The choice of the hyperparameters of the neural network are highly subjective
and several choice of architectures could lead to better results in the
computation of the DIM profile. There is still no rule to make a good choice
of architecture.
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Conclusion
Global conclusion on the internship topic about XVAs

Sum up of the presentation :
‚ Review of the mathematical framework for XVAs, mainly CVA, FVA and MVA and

the computational challenged associated with the computations of theses XVAs.
‚ Computation of EE profile for some Bermudan Options using the Least Square

Monte Carlo method and study of the algorithm efficiency for exposure calculation.
‚ Study of the GPR-MC methodology for the fast computation of EPE profile and

CVA0 computation to avoid the nested Monte-Carlo procedure showing great
accuracy on the EE profile and on the CVA0 computation.

‚ Study of the Deep Conditional Learning algorithm for MVA0 computation to avoid
the nested Monte-Carlo procedure showing great accuracy once the neural network
is trained with immediate computations.

To go further :
‚ Study of the Wrong Way Risk impact on the EE profile.
‚ Study of the Deep BSDE Solver for a computation of high-dimensional EE profile

and XVA0 computations deriving from a PDE representation of XVAs.
‚ Study of a dynamic hedging strategy of the counterparty exposure based on the

Mean-Variance Minimization quadratic hedging method with analytic formulas in
a simple framework.
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