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Introduction to financial derivatives, one-period model.

EXERCISE 1 -Future on a dividend-paying asset

1. Prove that the forward price (term T') of a tradeable asset is
K =¢"T(Sy— 1),

where Sy is the spot price, I is the value at t = 0 of the dividends (known coupons) paid by
the underlying asset between 0 and 7" (in this case I > 0) or the storage cost between 0 and T,
which is paid at ¢ = 0 (in this case I < 0).

2. A treasury bond with a nominal value of EUR 100 and a nominal rate of 8% pays its next
coupon in 3 months. Calculate the forward price of this bond with a 6-month maturity if its
price today is 106 EUR and the interest rate is 5% per annum.

EXERCISE 2 -Put-Call Parity.

We consider a risky asset whose price at time ¢ is S;. We assume that the interest rate r is positive.
We note ¢(t, S, T, K) (respectively p(t, S;, T, K)) the price of a European call (respectively of a put
European) with strike price K, maturity 7" and whose underlying asset is S.

1. Show the Put-Call parity property of European options prices :
(0,80, T, K) — p(0, 80, T,K) = Sy — Ke™"T.
2. Deduce that the price of the call satisfies
(Sg — Ke ™)+t < ¢(0,8,T,K) < So.

Show directly (without using 1.) the inequality Sy — Ke™"" < ¢(0, Sp, T, K).

3. We assume that the risky asset trades at 20 euros, that the price of a European call on this
asset, with strike price K = 11 euros and maturity T' = 1 year , is 13 euros. We further assume
that r = 9.531%. Compute the price of a European put with the same characteristics.

4. Show that today’s prices Co(T,K) = C(0,50,T7,K) and Py(T,K) = P(0,S0,T,K) of the
American call and American put options with maturity 1" and strike price K satisfy

Co(T,K) — Py(T,K) < Sy — Ke™ "

5. In the Black Scholes model, S; = Soegwﬁ(“fé)t, where (W})>0 is a Brownian motion. Knowing
that W, is a centered normal random variable with variance ¢, calculate E(e=""(Sy — K)*) —
E(e="T(K —Sr)"). Conclude that the insurance approach - which mainly consists in calculating
the price as the discounted expectation of the future payoff - leads to a contradiction with the
European Call-Put parity if u # r .

EXERCISE 3 - Using the same notations as in Exercise 2, show that

1. For any maturity 7" > 0, the price of call and put are convex at the strike price K.
2. VK > 0,VY0 < Ty < T, ¢(0,50,T1, K) < ¢(0, So, Ty, Ke'(T2=T0)),



EXERCISE 4 - Butterfly options.

Given an asset whose price at time T is St and strikes K1 < Ko < K3, a butterfly is a combination
of trading which is the result of the following net position : a long position on a European call with
strike price K, a long position on a European call with strike price K3, and a position short on two
European calls with strike price Ko.

1. What is the payoff of such an option? Calculate its price for all t < T

2. If Ky is the middle of the interval [K, K3], show that the butterfly can be created by buying
and selling options put with the different prices of exercise K1, Ko and Kj.

NB : butterfly options can be bought when the investor believes that the underlying asset will not rise
or fall much.

EXERCISE 5 -Effects of dividends on the price of European options.
In this exercise we consider options whose underlying asset pays dividends. Let D be the present value
of all the dividends paid over the interval [0, T]. Show the relationships :

1. ¢o(T,K)>So— D — Ke™ 7T,
2. po(T,K) > D+ Ke " — S,
3. (modified Put-Call parity) co(T, K) + D + Ke ™" = po(T, K) + Sp.

4. If the risky asset pays a dividend at time ¢, show that the price of the call remains continuous
at t, even if the price of the risky asset is not continuous at t.

EXERCISE 6 - A given asset trades at 95 euros and the Furopean calls and puts on the given asset,
with a strike price of 100 and a maturity of three months, trade respectively at 1.97 euros and 6.57
euros. In one month, the asset will pay a dividend of 1 euro. The prices of the one-month and three-
month zero-coupon bonds are 99.60 and 98.60 respectively. Build an arbitrage strategy, if possible.

EXERCISE 7 -American Options We denote by Call; (7, K) the price at date ¢ of an European call
with strike K and expiry date T, and by Puty(7T, K) the one of a put with same maturity 7" and strike
K. CallAmer(T, K) and PutAmer,(T, K) correspond respectively to the American call and put. We
assume that the underlying asset does not pay dividends.

1. Show that for all t < T,
CallAmer(T, K) = Cally(T, K).

2. Show that for all t < T,

Puty(T, K) < Amer Put, (7T, K) < Put,(T,K) + K(1 — e*T(T—t)).

EXERCISE 8 -A one-period model
We consider a one-period market with three states wi,ws,ws and two risky assets :
— An asset S with a value of 1.5 at time ¢ = 0, and which is worth, at time t = 1, ¢ when the
state corresponds to w;, for all ¢ =1,2,3.
— A put option, P on the asset S with strike K = 2, which is worth 3/8 at time ¢ = 0.
We assume that the interest rate is r = 1/3.

1. Evaluate the gain G as well as the discounted gain G* in each state for the strategy which
consists of the purchase of one unit of the risky asset and a put option. Is this an arbitrage
opportunity 7



2. For each state w;, i = 1,2, 3, calculate the corresponding price, i.e. price of the asset that pays
1 when wj is realized and 0 if not.

3. We add a fourth state wy where the price of the asset is worth 4, the other parameters remain
unchanged. Are there any arbitrage opportunities in this case? Characterize the set of risk-
neutral probabilities.

4. Is this new market complete ?

5. Can we complete this market with a Call with strike K = 27 with a Put with strike K =47
with strike K = 37 What are the no-arbitrage bounds for the prices of these three assets?

6. We assume that the market is completed with a Put with strike X' = 3 and price 7/8. Calculate
the risk-neutral probability in this new market. Calculate the price of a strike call K = 3.

EXERCISE 9 - Show that

1. Call prices are non increasing w.r.t to strike
Ki <K, = Cal(T,K;)> Call(T, K>).
(Put prices are non decreasing)
2. Cally(T, K) and Put,(7, K) are Lipschitz w.r.t to the strike, namely :

|Cally(T, K1) — Cally(T, K)| < e " T V| K| — Ky
|Puty (T, K1) — Puty(T, K2)| < e " T D|K| — Ky

3. Call prices are non decreasing w.r.t. maturity : 77 < T, implies Call(T1, K) < Call(T», K).

EXERCISE 10 - Capital protected investment

Some investment funds offer their clients a minimum performance guarantee. This type of guaran-
tee can be implemented using options. Suppose that the initial investment is normalized to 1, and that
the investor is guaranteed to receive at least K at maturity 7' (the floor).

1. Give a condition on the value of K so as not to create arbitrage in favor of the investor.

2. The following strategy then makes it possible to respect the constraint while maintaining a
potential gain :
— Invest a fraction A of the fund in the risky asset S. (we assume Sp = 1.)
— Use the residual amount to purchase a Put on AS with maturity T and strike K, or, equi-
valently, A Puts on S with strike K/\.

(a) What is the payoff of the optional part and the value of the fund in T'?

(b) Give the constraint on A.



Financial Mathematics.
Tutorial #3: CRR model & Multi-period models (2024)

EXERCICE 1 - The financial market contains a non-risky asset with price process
So =1, SY(ws) = S{wa) =1+R,
and one risky asset (d = 1) with price process
So = s, Si(wy) = su, Si(wg) = sd,
where s, r, u and d are strictly positive with u > d.
1. Show that (NA) holds iif u > 14+ R > d. (Give a direct proof)
2. Characterize the risk neutral probability.

3. A contingent claim is defined by its payoft B, := B(w,) and By := B(wq). Compute the price
po and the quantity of asset ¢ to replicate the payoff B. Comment on the completeness of the
market.

EXERCICE 2 - We consider a binomial financial market with two time periods (CRR model) and
parameters d = 0.95, v = 1.1 and r = 0.05. Let Sg = 95 be the initial price of the risky asset.

1. Calculate the price at time ¢ = 0 of an Asian Call with strike K = 100 and maturity T = 2.
2. Calculate the price at time ¢ = 0 of a call lookback with strike K = 100.

3. Calculate the price at time t = 0 of an American strike put K = 100.

EXERCICE 3 -Convergence of the Binomial model towards the Black Scholes model

Consider a financial market, consisting of a risk-free asset R normalized to ¢ = 0, and a risky
asset S, traded over the time period [0, T]. Divide the time interval [0, 7] into n intervals [, 7, ;] with
1= % We place ourselves within the framework of a binomial model with n periods. Let r, denote
the interest rate of the risk-free asset, the value R} of the risk-free asset at times ¢t = ¢’ is then given
by:

o= (1+ )"
We note X' the return of the risky asset between the times ¢ ; and ¢ . We then have under the
historical probability P,:

P(X!'=wu,)=p, and PX]=d,)=1-py.

We recall that the vector (X7,..., X)) is a vector of independent random variables. Let r and o be
two positive constants, r,, d,, and u, have the following form:

T T\ _5,/T T T
T e (10T (1D

n n n
1. Represent the evolution tree of the risky asset in the model.

2. Show that R’ converges to e"T as n tends to infinity.



10.

11.

Does (NA) hold in this market ?
Express the value S}, of the risky asset in ¢} as a function of Sy and (X1,...,X;).

Give the dynamics of the process X™ under the neutral risk probability Q,.
The probability Q,, (X" = u,,) will be denoted ¢, in the sequel.

Check that we have:

2

- n _ i n 2
R — nEq, [In X7'] — <7" 5 ) T nVarg, [In X7'] 0 T.

Show using the characteristic functions the convergence to the following law:
ZlnXl-" LN <<r - ) T,O’2T) :
= n—o00 2

Deduce that:

0,2
tow 6 (=)W A (0,7).

The dynamics of the limit is the one assumed in the Black & Scholes model.

Write in expectation form the price of a Put with strike K and maturity T in the n-period
binomial model.

Deduce that the Put price converges when n tends to infinity to:

Py:= Ke "' N (=da) — SoN (—dy) .
With A the normal distribution function A/ (0, 1), d; and da given by:

1n%+(r+”—22)T

and do:=dy — oVT.
ov/T S

d1 =

Conclude by obtaining the formula of Black & Scholes giving the price of the Call:

C() = S(]./\/ (dl) - Ke_TTN (d2) .



Introduction to financial mathematics.
Tutorial #4: Brownian Motion & Stochastic Integration

EXERCICE 1 -[Stopping times|

1. Let 7 and 79 be two stopping times. Show that the random variables 71 A 1o, 71 V 79 and 71 + T
are also stopping times.

2. Let (7)n>1 be a sequence of stopping times . Show that sup,, 7, is a stopping time.

EXERCICE 2 -[Equality of processes|

e Let X and Y be two stochastic processes defined on the same probability space (2, A4,P). We
assume that they have right-continuous trajectories.
Show that if X is a modification of Y then they are indistinguishable.

e Let Q =1[0,1], A= B([0,1]) and P = X the lebesgue measure. Define the process X by
[0,1] x 23 (t,w) — Xy(w) = Ly=wy € {0,1}.

We also introduce Y to be the constant process equal to 0.
Is X a modification of Y7 Are the two processes indistinguishable?

EXERCICE 3 -[Square integrable martingale| Let (Q, A, P, F = (F;):>0) be a filtered probability space.
We consider a square integrable martingale M with continuous sample path.

1. Show that for u < s < ¢:

E[(M; — M,)?|Fs] = E[(M; — M,)?|Fs] + (Ms — M,)*. (1)

2. Deduce that, for any subdivision 7 of [s,t], 0 < s < t:

E[M} — MJ|F] =E[(M; — My)*|Fs] =E|) (M, — My,_,)*| Fs| (2)
i=1

with tog = s, t,, = L.
3. What is the nature of the process N := M??

4. We assume moreover that My = 0 and that M has bounded variation path. Show then that
M =0.

EXERCICE 4 -|[Martingales|
Let (Bt)t>0 be a Brownian motion and F its natural filtration, show that the following processes
are F—martingales:

1. (Bt)tzo;
2. (Bt2 —t)>0;

0_2
3. (eUBt_zt) , with o € R, called the geometric Brownian motion.
>0



EXERCICE 5 -|Brownian Motion as a Gaussian process|
Show that:

1. The Brownian motion is a centered Gaussian process with covariance function c(s,t) =
E[W Wi =t As.

2. Conversely, any continuous centered Gaussian process with ¢ as covariance function is a Brownian
Motion.

EXERCICE 6 -|Characterisation of Brownian motion|
Let B be a continuous process such that By = 0 p.s. and F its natural filtration. Show that B is
a Brownian motion if, and only if, for all A € R, the complex process M* defined by:

2
M = PP
is a F-martingale.

EXERCICE 7 -[Brownian Motions]
Let (Bt)t>0 be a Brownian motion. Show that the following processes are also Brownian motions:

1
L. (EBGQt)tZO’
2. (Bttty — Bto)i0

3. The process defined by ¢By; for ¢ > 0 and extended by 0 to ¢ = 0.

EXERCICE 8 -|Brownian bridge]
Let (Bt)t>0 be a Brownian motion. We define a new process Z = (Z;)o<t<1 by:

Zy = By — tB;.
1. Show that Z is an process independent of Bj.

2. Compute the mean function m; and the covariance function K(s,t) of the process Z.

3. Show that the process defined for all t € [0, 1] by Zy := Z1_; has the same distribution as Z.

EXERCICE 9 -[Wiener integral] Let f be such that fOT f?(t)dt is finite. We consider the process
(Xt)ie[o,1) defined by:

t
0
where (W)¢>0 is a Standard Brownian Motion and (F;) its natural filtration.
1. Show that a limit in L?(92) of a sequence of variables random Gaussian is necessarily Gaussian.

2. Deduce that the process (X¢);e[o,1) is a Centered Gaussian process characterized by:
tAu

cov (Xy, Xu) = f2(s)ds.
0

3. Show that X is a process with independent increments.

4. What is the law of X7



EXERCICE 10 -[Martingale property of the stochastic integral]

For some ¢ € H?, we set M; = fg ¢sdBs, 0 <t < T, where B is a Brownian motion. We denote by
(Ft)t>0 the natural filtration of Brownian motion. We recall the result seen in class that the set 2
(simple random functions) is dense in H?.

1. Show that (M;),c(o,7) is a square integrable martingale.
2. Show that Ny := M2 — (M), t € [0,T] is a martingale.

3. Let A be a non-decreasing continuous and adapted process such that Ag = 0. Show that if the
process Q; := M? — Ay, t € [0,T], is a martingale then A = (M).



Introduction to financial mathematics.
Tutorial #5: Ito Calculus

EXERCICE 1 -[It6 formula

1. Calculate fg WdWs.

3
2. Compute the dynamics of X; = % — tWs.

3. Compute the dynamics of X; = ze®We ot

EXERCICE 2 - Recall that an It6 process is given by

¢ ¢
X =Xo+ / osds + / BsdBs
0 0

for o, f € H2.
Show that the decomposition of an Ito process is unique.

EXERCICE 3 -[Covariation| For two Ito processes X, Y, we define the covaration process by

(X, ) =-((X4+Y) — (X =Y)).

|

1. What is the nature of the process XY —(X,Y), when X and Y are square integrable martingales?

2. Show that the following formula holds true:

A(XY)y = XydY; + Yid X, + d(X,Y); .

EXERCICE 4 -|Black Scholes SDE| Let B be a Standard Brownian Motion. We consider the Black
Scholes differential equation:

dS; = St(udt + O’th) et Sp==x.

—_

. Using It6’s formula, show that the unique solution of this equation is:

St = xe(“702/2)t+o'wt .

2. Calculate E[Sy].
3. Let u € CY2([0,T] x R;). Show, using Ito’s formula, that

ou ou ou 1 0*u
du(t, Sp) = Zodt + SepSidt + Sc0SidWs + 5077 5.

4. For o > 2, determine the dynamics of Sp*.

5. Deduce E[Sf] for a > 2.



EXERCICE 5 -|Representation of PDE solutions] Let u € C12([0, T) x R)NC([0,T] x R) be a solution
of the heat PDE

Ou 1 _,0%

5—1-20 83:2:0’ 0<t<T, zekR, uw(T,z) =g(x), x€R.

We assume that v and g—: have polynomial growth in z: there exist constants constant C' < oo and

p < oo such that
u(t,2)| < C(1+[zfP), 0<t<T, zeR

1. Apply Itd’s formula to u(t + s, x + o Ws).
2. Deduce that for all e < T — ¢,

u(t,z) =Eu(T —e,x +oWr__c)].

3. Using the dominated convergence theorem, deduce a probabilistic representation for u:

u(t,z) = Elg(z + cWr_4)].



Introduction to financial mathematics.
Tutorial #6: Continuous time finance

EXERCICE 1 -[Cameron-Martin formula/Girsanov Theorem| Let (B¢, 0 < ¢t < T) be a Standard
Brownian Motion on (2, F,P) with filtration (F3,0 <t <T).

Let Q be an equivalent probability on (€2, F) to P. Then, for all ¢ < T', the Radon-Nikodym density
of Qr, vs. Pz, is denoted Z;:
_ dQ
T dPlR
where Qr,, Pr, are the Probability restrictions to the o-algebra F;.

Zy >0
1. Show that the process Z is a F-martingale positive with respect to P. Calculate E[Z;] for all ¢.

2. Show that under the previous assumptions we have the rule of Bayes: If Y is F;-measurable,

1
Vs <t, EQY|F]= - EF[Y Zy| Fs)
S

Now let Q be the probability equivalent to IP defined by

dQ

142
7 .= o~ ABi—3Nt
dP

F

1. Show that Z is indeed a continuous martingale positive. Calculate E[Z;].

2. We recall that if a continuous process verifies
Vo eR, E [ew(Wt—Wsts =G

then W is a Brownian Motion. Show that the process W defined by W; = B; + ot is a Brownian
Motion under Q.

EXERCICE 2 -|[Power Options| In this exercise we consider a power option of type A, pay off
A 2 2
Hy = (87— K*)*

and a pay-off type B power option
Hf = ((Sr — K)")?,

under the Black-Scholes model.

1. Using risk-neutral valuation, calculate the price F; at time ¢ of an asset that pays S% to time T'.
Show that F}' follows the Black-Scholes model, calculate its volatility.

2. Show that the type A power option can be seen as a standard call option on the asset F''. Using
the Black-Scholes formula, calculate the price at time ¢ of the type A power option.

3. Calculate the delta (using the formula for deriving a compound function) and describe the dy-
namic hedging strategy for this option.

4. Show that the pay-off of the type B power option can be expressed in terms of the pay-off of the
type A option and the pay-off of the K strike call option.

5. Deduce the price of option type B at time ¢t < T.



6. Compute the delta of the type B power option.

7. Deduce the gamma of the type B power option and show that it is bounded by a constant
independent of ¢ and S;. What are the implications for the coverage of this property?

EXERCICE 3 - Let g : R} — R be a bounded continuous function and 7' > 0 a terminal time. We
define, for (¢,z) € [0,T] x R%.
02
v(t, ) = Elg(ze™ 7 T-0FoWr-)] (1)
W is a brownian motion and z,0 are positive.
1. Show that v € C([0,T] x R%).

2. Show that v € C12([0,T) x R*) and that it has bounded first and second order derivatives on
[0,T — €] x R¥ for every € > 0.

3. Using the expression of the derivatives computed at the previous question, show that v satisfies

o 1 45 ,0% X
a + 50' X @ =0on [O,T) X R+a U(Ta x) = g(x) (2)

4. Show that any bounded solution u € C12([0,T) x R% ) N C([0, T] x R% ) with bounded first order
derivatives of the PDE (2) writes

u(t,x) = Elg(S7")] (3)

where S%x =x+ ftT Sﬁ% dWs. Conclude.

EXERCICE 4 -[Delta of vanilla option]|
1. Recall the Black and Scholes formula for evaluating a Call.
2. Show that for the Call, the Delta is given by N(d.).
3. Show that for a payoff option g the Delta can be written
Wr ]
SooT |

A = EQ [e—”Tg(sT)

EXERCICE 5 -|Geometric Asian option| We consider a financial market made up of a risk-free asset,
interest rate r > 0, and a risky asset S whose dynamics is defined by the Black and Scholes model:
ds
L — bdt + gdW? , Sy >0
St
where b € R, ¢ > 0 are given parameters, and W? is a Brownian motion on the probability space
(Q, F,P) endowed with the filtration (F;):>0 satisfying the usual conditions. An Asian option on the
continuous geometric mean is defined by the payoff at maturity 7" > 0:

_ _ I
G:=(Sr— K)+where ST = exp (T/ log (St)dt)-
0

1. Let Q be the risk-neutral probability and W the Brownian motion associated by Girsanov’s
theorem. Write the density of Q and W as a function of W°.



. Applying Ito’s formula to a well-chosen process, show that [ Widt = [/ (T — t)dW.
. Show that

Sr = S’Oe’"T—% Jo a(®)2dt+ [y 5(t)th,
where

_ r o2 t
So=Spe TR and  o(t) = <1 - T> o.

. Recall the risk-neutral valuation formula for the G payoff option.
. Give the explicit formula for price py at date 0 of the geometric Asian option above.

. Explain how to construct the hedge portfolio for this option.



