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Introduction to financial derivatives, one-period model.

EXERCISE 1 -Future on a dividend-paying asset

1. Prove that the forward price (term T ) of a tradeable asset is

K = erT (S0 − I),

where S0 is the spot price, I is the value at t = 0 of the dividends (known coupons) paid by
the underlying asset between 0 and T (in this case I > 0) or the storage cost between 0 and T ,
which is paid at t = 0 (in this case I < 0).

2. A treasury bond with a nominal value of EUR 100 and a nominal rate of 8% pays its next
coupon in 3 months. Calculate the forward price of this bond with a 6-month maturity if its
price today is 106 EUR and the interest rate is 5% per annum.

EXERCISE 2 -Put-Call Parity.
We consider a risky asset whose price at time t is St. We assume that the interest rate r is positive.
We note c(t, St, T,K) (respectively p(t, St, T,K)) the price of a European call (respectively of a put
European) with strike price K, maturity T and whose underlying asset is S.

1. Show the Put-Call parity property of European options prices :

c(0, S0, T,K)− p(0, S0, T,K) = S0 −Ke−rT .

2. Deduce that the price of the call satisfies

(S0 −Ke−rT )+ ≤ c(0, S0, T,K) ≤ S0.

Show directly (without using 1.) the inequality S0 −Ke−rT ≤ c(0, S0, T,K).

3. We assume that the risky asset trades at 20 euros, that the price of a European call on this
asset, with strike price K = 11 euros and maturity T = 1 year , is 13 euros. We further assume
that r = 9.531%. Compute the price of a European put with the same characteristics.

4. Show that today’s prices C0(T,K) = C(0, S0, T,K) and P0(T,K) = P (0, S0, T,K) of the
American call and American put options with maturity T and strike price K satisfy

C0(T,K)− P0(T,K) ≤ S0 −Ke−rT .

5. In the Black Scholes model, St = S0e
σWt+(µ−σ2

2
)t, where (Wt)t≥0 is a Brownian motion. Knowing

that Wt is a centered normal random variable with variance t, calculate E(e−rT (ST −K)+) −
E(e−rT (K−ST )

+). Conclude that the insurance approach - which mainly consists in calculating
the price as the discounted expectation of the future payoff - leads to a contradiction with the
European Call-Put parity if µ ̸= r .

EXERCISE 3 - Using the same notations as in Exercise 2, show that

1. For any maturity T > 0, the price of call and put are convex at the strike price K.

2. ∀K > 0, ∀0 ≤ T1 ≤ T2, c(0, S0, T1,K) ≤ c(0, S0, T2,Ker(T2−T1)).



EXERCISE 4 - Butterfly options.

Given an asset whose price at time T is ST and strikes K1 < K2 < K3, a butterfly is a combination
of trading which is the result of the following net position : a long position on a European call with
strike price K1, a long position on a European call with strike price K3, and a position short on two
European calls with strike price K2.

1. What is the payoff of such an option ? Calculate its price for all t ≤ T .
2. If K2 is the middle of the interval [K1,K3], show that the butterfly can be created by buying

and selling options put with the different prices of exercise K1, K2 and K3.
NB : butterfly options can be bought when the investor believes that the underlying asset will not rise
or fall much.

EXERCISE 5 -Effects of dividends on the price of European options.
In this exercise we consider options whose underlying asset pays dividends. Let D be the present value
of all the dividends paid over the interval [0, T ]. Show the relationships :

1. c0(T,K) ≥ S0 −D −Ke−rT ,
2. p0(T,K) ≥ D +Ke−rT − S0,
3. (modified Put-Call parity) c0(T,K) +D +Ke−rT = p0(T,K) + S0.
4. If the risky asset pays a dividend at time t, show that the price of the call remains continuous

at t, even if the price of the risky asset is not continuous at t.

EXERCISE 6 - A given asset trades at 95 euros and the European calls and puts on the given asset,
with a strike price of 100 and a maturity of three months, trade respectively at 1.97 euros and 6.57
euros. In one month, the asset will pay a dividend of 1 euro. The prices of the one-month and three-
month zero-coupon bonds are 99.60 and 98.60 respectively. Build an arbitrage strategy, if possible.

EXERCISE 7 -American Options We denote by Callt(T,K) the price at date t of an European call
with strike K and expiry date T , and by Putt(T,K) the one of a put with same maturity T and strike
K. CallAmert(T,K) and PutAmert(T,K) correspond respectively to the American call and put. We
assume that the underlying asset does not pay dividends.

1. Show that for all t ≤ T ,
CallAmert(T,K) = Callt(T,K).

2. Show that for all t ≤ T ,

Putt(T,K) ≤ Amer Putt(T,K) ≤ Putt(T,K) +K(1− e−r(T−t)).

EXERCISE 8 -A one-period model
We consider a one-period market with three states ω1, ω2, ω3 and two risky assets :

— An asset S with a value of 1.5 at time t = 0, and which is worth, at time t = 1, i when the
state corresponds to ωi, for all i =1,2,3.

— A put option, P on the asset S with strike K = 2, which is worth 3/8 at time t = 0.
We assume that the interest rate is r = 1/3.

1. Evaluate the gain G as well as the discounted gain G∗ in each state for the strategy which
consists of the purchase of one unit of the risky asset and a put option. Is this an arbitrage
opportunity ?



2. For each state ωi, i = 1, 2, 3, calculate the corresponding price, i.e. price of the asset that pays
1 when ωi is realized and 0 if not.

3. We add a fourth state ω4 where the price of the asset is worth 4, the other parameters remain
unchanged. Are there any arbitrage opportunities in this case ? Characterize the set of risk-
neutral probabilities.

4. Is this new market complete ?

5. Can we complete this market with a Call with strike K = 2 ? with a Put with strike K = 4 ?
with strike K = 3 ? What are the no-arbitrage bounds for the prices of these three assets ?

6. We assume that the market is completed with a Put with strike K = 3 and price 7/8. Calculate
the risk-neutral probability in this new market. Calculate the price of a strike call K = 3.

EXERCISE 9 - Show that

1. Call prices are non increasing w.r.t to strike

K1 ≤ K2 ⇒ Call(T,K1) ≥ Call(T,K2).

(Put prices are non decreasing)

2. Callt(T,K) and Putt(T,K) are Lipschitz w.r.t to the strike, namely :

|Callt(T,K1)− Callt(T,K2)| ≤ e−r(T−t)|K1 −K2|
|Putt(T,K1)− Putt(T,K2)| ≤ e−r(T−t)|K1 −K2|

3. Call prices are non decreasing w.r.t. maturity : T1 ≤ T2 implies Call(T1,K) ≤ Call(T2,K).

EXERCISE 10 - Capital protected investment

Some investment funds offer their clients a minimum performance guarantee. This type of guaran-
tee can be implemented using options. Suppose that the initial investment is normalized to 1, and that
the investor is guaranteed to receive at least K at maturity T (the floor).

1. Give a condition on the value of K so as not to create arbitrage in favor of the investor.

2. The following strategy then makes it possible to respect the constraint while maintaining a
potential gain :
— Invest a fraction λ of the fund in the risky asset S. (we assume S0 = 1.)
— Use the residual amount to purchase a Put on λS with maturity T and strike K, or, equi-

valently, λ Puts on S with strike K/λ.

(a) What is the payoff of the optional part and the value of the fund in T ?
(b) Give the constraint on λ.



Financial Mathematics.
Tutorial #3: CRR model & Multi-period models (2024)

EXERCICE 1 - The financial market contains a non-risky asset with price process

S0
0 = 1 , S0

1(ωu) = S0
1(ωd) = 1 +R ,

and one risky asset (d = 1) with price process

S0 = s , S1(ωu) = su , S1(ωd) = sd ,

where s, r, u and d are strictly positive with u > d.

1. Show that (NA) holds iif u > 1 +R > d. (Give a direct proof)

2. Characterize the risk neutral probability.

3. A contingent claim is defined by its payoff Bu := B(ωu) and Bd := B(ωd). Compute the price
p0 and the quantity of asset φ to replicate the payoff B. Comment on the completeness of the
market.

EXERCICE 2 - We consider a binomial financial market with two time periods (CRR model) and
parameters d = 0.95, u = 1.1 and r = 0.05. Let S0 = 95 be the initial price of the risky asset.

1. Calculate the price at time t = 0 of an Asian Call with strike K = 100 and maturity T = 2.

2. Calculate the price at time t = 0 of a call lookback with strike K = 100.

3. Calculate the price at time t = 0 of an American strike put K = 100.

EXERCICE 3 -Convergence of the Binomial model towards the Black Scholes model

Consider a financial market, consisting of a risk-free asset R normalized to t = 0, and a risky
asset S, traded over the time period [0, T ]. Divide the time interval [0, T ] into n intervals [tni , t

n
i+1] with

tni := iT
n . We place ourselves within the framework of a binomial model with n periods. Let rn denote

the interest rate of the risk-free asset, the value Rnt of the risk-free asset at times t = tni is then given
by:

Rntni = (1 + rn)
i.

We note Xn
i the return of the risky asset between the times tni−1 and tni . We then have under the

historical probability Pn:

P(Xn
i = un) = pn and P(Xn

i = dn) = 1− pn.

We recall that the vector (Xn
1 , . . . , X

n
n ) is a vector of independent random variables. Let r and σ be

two positive constants, rn, dn and un have the following form:

rn =
rT

n
dn =

(
1 +

rT

n

)
e
−σ
√
T
n un =

(
1 +

rT

n

)
e
σ
√
T
n .

1. Represent the evolution tree of the risky asset in the model.

2. Show that RnT converges to erT as n tends to infinity.



3. Does (NA) hold in this market ?

4. Express the value Sntni of the risky asset in tni as a function of S0 and (X1, . . . , Xi).

5. Give the dynamics of the process Xn under the neutral risk probability Qn.

The probability Qn (X
n
i = un) will be denoted qn in the sequel.

6. Check that we have:

qn −−−→
n→∞

1

2
nEQn [lnX

n
1 ] −−−→n→∞

(
r − σ2

2

)
T nV arQn [lnX

n
1 ] −−−→n→∞

σ2T.

7. Show using the characteristic functions the convergence to the following law:

n∑
i=1

lnXn
i

law−−−→
n→∞

N
((

r − σ2

2

)
T, σ2T

)
.

8. Deduce that:
SnT

law−−−→
n→∞

S0e

(
r−σ

2

2

)
T+σWT with WT ∼ N (0, T ) .

The dynamics of the limit is the one assumed in the Black & Scholes model.

9. Write in expectation form the price of a Put with strike K and maturity T in the n-period
binomial model.

10. Deduce that the Put price converges when n tends to infinity to:

P0 := Ke−rTN (−d2)− S0N (−d1) .

With N the normal distribution function N (0, 1), d1 and d2 given by:

d1 :=
ln S0

K +
(
r + σ2

2

)
T

σ
√
T

and d2 := d1 − σ
√
T .

11. Conclude by obtaining the formula of Black & Scholes giving the price of the Call:

C0 := S0N (d1)−Ke−rTN (d2) .



Introduction to financial mathematics.
Tutorial #4: Brownian Motion & Stochastic Integration

EXERCICE 1 -[Stopping times]

1. Let τ1 and τ2 be two stopping times. Show that the random variables τ1 ∧ τ2, τ1 ∨ τ2 and τ1 + τ2
are also stopping times.

2. Let (τn)n≥1 be a sequence of stopping times . Show that supn τn is a stopping time.

EXERCICE 2 -[Equality of processes]

• Let X and Y be two stochastic processes defined on the same probability space (Ω,A,P). We
assume that they have right-continuous trajectories.
Show that if X is a modification of Y then they are indistinguishable.

• Let Ω = [0, 1], A = B([0, 1]) and P = λ the lebesgue measure. Define the process X by

[0, 1]× Ω ∋ (t, ω) 7→ Xt(ω) = 1{t=ω} ∈ {0, 1}.

We also introduce Y to be the constant process equal to 0.
Is X a modification of Y ? Are the two processes indistinguishable?

EXERCICE 3 -[Square integrable martingale] Let (Ω,A,P,F = (Ft)t≥0) be a filtered probability space.
We consider a square integrable martingale M with continuous sample path.

1. Show that for u ≤ s ≤ t:

E
[
(Mt −Mu)

2|Fs

]
= E

[
(Mt −Ms)

2|Fs

]
+ (Ms −Mu)

2. (1)

2. Deduce that, for any subdivision π of [s, t], 0 ≤ s < t:

E
[
M2

t −M2
s |Fs

]
= E

[
(Mt −Ms)

2|Fs

]
= E

[
n∑

i=1

(Mti −Mti−1)
2|Fs

]
, (2)

with t0 = s, tn = t.

3. What is the nature of the process N := M2?

4. We assume moreover that M0 = 0 and that M has bounded variation path. Show then that
M = 0.

EXERCICE 4 -[Martingales]
Let (Bt)t≥0 be a Brownian motion and F its natural filtration, show that the following processes

are F−martingales:

1. (Bt)t≥0;

2. (B2
t − t)≥0;

3.
(
eσBt−σ2t

2

)
t≥0

, with σ ∈ R, called the geometric Brownian motion.



EXERCICE 5 -[Brownian Motion as a Gaussian process]
Show that:

1. The Brownian motion is a centered Gaussian process with covariance function c(s, t) =
E[WsWt] = t ∧ s.

2. Conversely, any continuous centered Gaussian process with c as covariance function is a Brownian
Motion.

EXERCICE 6 -[Characterisation of Brownian motion]
Let B be a continuous process such that B0 = 0 p.s. and F its natural filtration. Show that B is

a Brownian motion if, and only if, for all λ ∈ R, the complex process Mλ defined by:

Mλ
t := eiλBt+

λ2t
2

is a F-martingale.

EXERCICE 7 -[Brownian Motions]
Let (Bt)t≥0 be a Brownian motion. Show that the following processes are also Brownian motions:

1.
(
1
aBa2t

)
t≥0

,

2. (Bt+t0 −Bt0)t≥0,

3. The process defined by tB1/t for t > 0 and extended by 0 to t = 0.

EXERCICE 8 -[Brownian bridge]
Let (Bt)t≥0 be a Brownian motion. We define a new process Z = (Zt)0≤t≤1 by:

Zt = Bt − tB1.

1. Show that Z is an process independent of B1.

2. Compute the mean function mt and the covariance function K(s, t) of the process Z.

3. Show that the process defined for all t ∈ [0, 1] by Z̃t := Z1−t has the same distribution as Z.

EXERCICE 9 -[Wiener integral] Let f be such that
∫ T
0 f2(t)dt is finite. We consider the process

(Xt)t∈[0,1] defined by:

Xt =

∫ t

0
f(u)dWu

where (Wt)t≥0 is a Standard Brownian Motion and (Ft) its natural filtration.

1. Show that a limit in L2(Ω) of a sequence of variables random Gaussian is necessarily Gaussian.

2. Deduce that the process (Xt)t∈[0,1] is a Centered Gaussian process characterized by:

cov (Xt, Xu) =

∫ t∧u

0
f2(s)ds.

3. Show that X is a process with independent increments.

4. What is the law of X1?



EXERCICE 10 -[Martingale property of the stochastic integral]
For some ϕ ∈ H2, we set Mt =

∫ t
0 ϕsdBs, 0 ≤ t ≤ T , where B is a Brownian motion. We denote by

(Ft)t≥0 the natural filtration of Brownian motion. We recall the result seen in class that the set E2

(simple random functions) is dense in H2.

1. Show that (Mt)t∈[0,T ] is a square integrable martingale.

2. Show that Nt := M2
t − ⟨M⟩t, t ∈ [0, T ] is a martingale.

3. Let A be a non-decreasing continuous and adapted process such that A0 = 0. Show that if the
process Qt := M2

t −At, t ∈ [0, T ], is a martingale then A = ⟨M⟩.



Introduction to financial mathematics.
Tutorial #5: Ito Calculus

EXERCICE 1 -[Itô formula]

1. Calculate
∫ t
0 WsdWs.

2. Compute the dynamics of Xt =
W 3

t
3 − tWt.

3. Compute the dynamics of Xt = xeaWt+bt.

EXERCICE 2 - Recall that an Itô process is given by

Xt = X0 +

∫ t

0
αsds+

∫ t

0
βsdBs

for α, β ∈ H2.
Show that the decomposition of an Ito process is unique.

EXERCICE 3 -[Covariation] For two Ito processes X, Y , we define the covaration process by

⟨X,Y ⟩t =
1

4
(⟨X + Y ⟩t − ⟨X − Y ⟩t) .

1. What is the nature of the process XY −⟨X,Y ⟩, when X and Y are square integrable martingales?

2. Show that the following formula holds true:

d(XY )t = XtdYt + YtdXt + d⟨X,Y ⟩t .

EXERCICE 4 -[Black Scholes SDE] Let B be a Standard Brownian Motion. We consider the Black
Scholes differential equation:

dSt = St(µdt+ σdWt) et S0 = x.

1. Using Itô’s formula, show that the unique solution of this equation is:

St = xe(µ−σ2/2)t+σWt .

2. Calculate E[St].

3. Let u ∈ C1,2([0, T ]× R+). Show, using Itô’s formula, that

du(t, St) =
∂u

∂t
dt+

∂u

∂S
µStdt+

∂u

∂S
σStdWt +

1

2
σ2S2

t

∂2u

∂S2
dt.

4. For α ≥ 2, determine the dynamics of Sα
t .

5. Deduce E[Sα
t ] for α ≥ 2.



EXERCICE 5 -[Representation of PDE solutions] Let u ∈ C1,2([0, T )×R)∩C([0, T ]×R) be a solution
of the heat PDE

∂u

∂t
+

1

2
σ2∂

2u

∂x2
= 0, 0 ≤ t < T, x ∈ R, u(T, x) = g(x), x ∈ R.

We assume that u and ∂u
∂x have polynomial growth in x: there exist constants constant C < ∞ and

p < ∞ such that
|u(t, x)| ≤ C(1 + |x|p), 0 ≤ t ≤ T, x ∈ R.

1. Apply Itô’s formula to u(t+ s, x+ σWs).

2. Deduce that for all ε < T − t,

u(t, x) = E[u(T − ε, x+ σWT−t−ε)].

3. Using the dominated convergence theorem, deduce a probabilistic representation for u:

u(t, x) = E[g(x+ σWT−t)].



Introduction to financial mathematics.
Tutorial #6: Continuous time finance

EXERCICE 1 -[Cameron-Martin formula/Girsanov Theorem] Let (Bt, 0 ≤ t ≤ T ) be a Standard
Brownian Motion on (Ω,F ,P) with filtration (Ft, 0 ≤ t ≤ T ).

Let Q be an equivalent probability on (Ω,F) to P. Then, for all t ≤ T , the Radon-Nikodym density
of QFt vs. PFt is denoted Zt:

Zt =
dQ
dP

∣∣∣
Ft

> 0

where QFt , PFt are the Probability restrictions to the σ-algebra Ft.

1. Show that the process Z is a F-martingale positive with respect to P. Calculate E[Zt] for all t.

2. Show that under the previous assumptions we have the rule of Bayes: If Y is Ft-measurable,

∀s ≤ t, EQ[Y |Fs] =
1

Zs
EP[Y Zt|Fs]

Now let Q be the probability equivalent to P defined by

dQ
dP

∣∣∣
Ft

= Zt := e−λBt− 1
2
λ2t.

1. Show that Z is indeed a continuous martingale positive. Calculate E[Zt].

2. We recall that if a continuous process verifies

∀θ ∈ R, E
[
eiθ(Wt−Ws)|Fs

]
= e−

θ2

2
(t−s)

then W is a Brownian Motion. Show that the process W defined by Wt = Bt + σt is a Brownian
Motion under Q.

EXERCICE 2 -[Power Options] In this exercise we consider a power option of type A, pay off

HA
T = (S2

T −K2)+

and a pay-off type B power option
HB

T = ((ST −K)+)2,

under the Black-Scholes model.

1. Using risk-neutral valuation, calculate the price Ft at time t of an asset that pays S2
T to time T .

Show that F 1
t follows the Black-Scholes model, calculate its volatility.

2. Show that the type A power option can be seen as a standard call option on the asset F 1. Using
the Black-Scholes formula, calculate the price at time t of the type A power option.

3. Calculate the delta (using the formula for deriving a compound function) and describe the dy-
namic hedging strategy for this option.

4. Show that the pay-off of the type B power option can be expressed in terms of the pay-off of the
type A option and the pay-off of the K strike call option.

5. Deduce the price of option type B at time t < T .



6. Compute the delta of the type B power option.

7. Deduce the gamma of the type B power option and show that it is bounded by a constant
independent of t and St. What are the implications for the coverage of this property?

EXERCICE 3 - Let g : R∗
+ → R be a bounded continuous function and T > 0 a terminal time. We

define, for (t, x) ∈ [0, T ]× R∗
+

v(t, x) = E[g(xe−
σ2

2
(T−t)+σWT−t)] (1)

W is a brownian motion and x,σ are positive.

1. Show that v ∈ C([0, T ]× R∗
+).

2. Show that v ∈ C1,2([0, T ) × R∗
+) and that it has bounded first and second order derivatives on

[0, T − ϵ]× R∗
+ for every ϵ > 0.

3. Using the expression of the derivatives computed at the previous question, show that v satisfies

∂v

∂t
+

1

2
σ2x2

∂2v

∂x2
= 0 on [0, T )× R∗

+, v(T, x) = g(x). (2)

4. Show that any bounded solution u ∈ C1,2([0, T )×R∗
+)∩C([0, T ]×R∗

+) with bounded first order
derivatives of the PDE (2) writes

u(t, x) = E[g(St,x
T )] (3)

where St,x
T = x+

∫ T
t St,x

s σ dWs. Conclude.

EXERCICE 4 -[Delta of vanilla option]

1. Recall the Black and Scholes formula for evaluating a Call.

2. Show that for the Call, the Delta is given by N(d+).

3. Show that for a payoff option g the Delta can be written

∆ = EQ
[
e−rT g(ST )

WT

S0σT

]
.

EXERCICE 5 -[Geometric Asian option] We consider a financial market made up of a risk-free asset,
interest rate r ≥ 0, and a risky asset S whose dynamics is defined by the Black and Scholes model:

dSt

St
= bdt+ σdW o

t , S0 > 0

where b ∈ R, σ > 0 are given parameters, and W o is a Brownian motion on the probability space
(Ω,F ,P) endowed with the filtration (Ft)t≥0 satisfying the usual conditions. An Asian option on the
continuous geometric mean is defined by the payoff at maturity T > 0:

G :=
(
ST −K

)+where ST = exp

(
1

T

∫ T

0
log (St)dt

)
.

1. Let Q be the risk-neutral probability and W the Brownian motion associated by Girsanov’s
theorem. Write the density of Q and W as a function of W o.



2. Applying Ito’s formula to a well-chosen process, show that
∫ T
0 Wtdt =

∫ T
0 (T − t)dWt.

3. Show that

S̄T = S̄0e
rT− 1

2

∫ T
0 σ̄(t)2dt+

∫ T
0 σ̄(t)dWt ,

where

S̄0 = S0e
−( r

2
+σ2

12
)T and σ̄(t) =

(
1− t

T

)
σ.

4. Recall the risk-neutral valuation formula for the G payoff option.

5. Give the explicit formula for price p0 at date 0 of the geometric Asian option above.

6. Explain how to construct the hedge portfolio for this option.


