Financial Mathematics.

Tutorial #3: CRR model & Multi-period models (2024)

EXERCICE 1 - The financial market contains a non-risky asset with price process

$$S_0^0 = 1$$
, $S_1^0(\omega_u) = S_1^0(\omega_d) = 1 + R$,

and one risky asset (d = 1) with price process

$$S_0 = s$$
, $S_1(\omega_u) = su$, $S_1(\omega_d) = sd$,

where s, r, u and d are strictly positive with u > d.

- 1. Show that (NA) holds iif u > 1 + R > d. (Give a direct proof)
- 2. Characterize the risk neutral probability.
- 3. A contingent claim is defined by its payoff $B_u := B(\omega_u)$ and $B_d := B(\omega_d)$. Compute the price p_0 and the quantity of asset ϕ to replicate the payoff B. Comment on the completeness of the market.

EXERCICE 2 - We consider a binomial financial market with two time periods (CRR model) and parameters d = 0.95, u = 1.1 and r = 0.05. Let $S_0 = 95$ be the initial price of the risky asset.

- 1. Calculate the price at time t=0 of an Asian Call with strike K=100 and maturity T=2.
- 2. Calculate the price at time t=0 of a call lookback with strike K=100.
- 3. Calculate the price at time t=0 of an American strike put K=100.

EXERCICE 3 -Convergence of the Binomial model towards the Black Scholes model

Consider a financial market, consisting of a risk-free asset R normalized to t = 0, and a risky asset S, traded over the time period [0,T]. Divide the time interval [0,T] into n intervals $[t_i^n, t_{i+1}^n]$ with $t_i^n := \frac{iT}{n}$. We place ourselves within the framework of a binomial model with n periods. Let r_n denote the interest rate of the risk-free asset, the value R_t^n of the risk-free asset at times $t = t_i^n$ is then given by:

$$R_{t_i^n}^n = (1 + r_n)^i$$
.

We note X_i^n the return of the risky asset between the times t_{i-1}^n and t_i^n . We then have under the historical probability \mathbb{P}_n :

$$\mathbb{P}(X_i^n = u_n) = p_n$$
 and $\mathbb{P}(X_i^n = d_n) = 1 - p_n$.

We recall that the vector (X_1^n, \ldots, X_n^n) is a vector of independent random variables. Let r and σ be two positive constants, r_n , d_n and u_n have the following form:

$$r_n = \frac{rT}{n}$$
 $d_n = \left(1 + \frac{rT}{n}\right)e^{-\sigma\sqrt{\frac{T}{n}}}$ $u_n = \left(1 + \frac{rT}{n}\right)e^{\sigma\sqrt{\frac{T}{n}}}.$

- 1. Represent the evolution tree of the risky asset in the model.
- 2. Show that R_T^n converges to e^{rT} as n tends to infinity.

- 3. Does (NA) hold in this market?
- 4. Express the value $S_{t_i^n}^n$ of the risky asset in t_i^n as a function of S_0 and (X_1, \ldots, X_i) .
- 5. Give the dynamics of the process X^n under the neutral risk probability \mathbb{Q}_n . The probability \mathbb{Q}_n $(X_i^n = u_n)$ will be denoted q_n in the sequel.
- 6. Check that we have:

$$q_n \xrightarrow[n \to \infty]{} \frac{1}{2} \qquad n\mathbb{E}_{\mathbb{Q}_n} \left[\ln X_1^n \right] \xrightarrow[n \to \infty]{} \left(r - \frac{\sigma^2}{2} \right) T \qquad nVar_{\mathbb{Q}_n} \left[\ln X_1^n \right] \xrightarrow[n \to \infty]{} \sigma^2 T.$$

7. Show using the characteristic functions the convergence to the following law:

$$\sum_{i=1}^{n} \ln X_i^n \xrightarrow[n \to \infty]{law} \mathcal{N}\left(\left(r - \frac{\sigma^2}{2}\right)T, \sigma^2 T\right).$$

8. Deduce that:

$$S_T^n \xrightarrow[n \to \infty]{law} S_0 e^{\left(r - \frac{\sigma^2}{2}\right)T + \sigma W_T}$$
 with $W_T \sim \mathcal{N}\left(0, T\right)$.

The dynamics of the limit is the one assumed in the Black & Scholes model.

- 9. Write in expectation form the price of a Put with strike K and maturity T in the n-period binomial model.
- 10. Deduce that the Put price converges when n tends to infinity to:

$$P_0 := Ke^{-rT}\mathcal{N}\left(-d_2\right) - S_0\mathcal{N}\left(-d_1\right).$$

With \mathcal{N} the normal distribution function $\mathcal{N}(0,1)$, d_1 and d_2 given by:

$$d_1 := \frac{\ln \frac{S_0}{K} + \left(r + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$$
 and $d_2 := d_1 - \sigma\sqrt{T}$.

11. Conclude by obtaining the formula of Black & Scholes giving the price of the Call:

$$C_0 := S_0 \mathcal{N}(d_1) - K e^{-rT} \mathcal{N}(d_2).$$