
Dr
af

tSome applications of Deep Learning algorithms for PDEs

Samy Mekkaoui

CMAP, Ecole Polytechnique
and LPSM

Master M2MO, SFA
Mastère spécialisé FGR, DS

ENSAE 3A

19 March 2025

Deep Learning for PDE Machine Learning in Finance 19 March 2025 1 / 31



Dr
af

t

Main topic of the lecture

Objectives :
‚ Present some applications of the Deep Galerkin Algorithm and Deep BSDE

Solver for solving PDE.
‚ Show how both of theses algorithms can be efficiently implemented in Python

with PyTorch.
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A reminder on the Deep Galerkin Algorithm
Mathematical Foundations

We are giving to present some applications of the Deep Galerkin algorithm for solving
PDE in a general form :

Bv pt, xq “ Hrv spt, xq pt, xq P r0, T q ˆ Rd (1)

vpT , xq “ gpxq, x P Rd (2)

where H is an operator which can contain multiples derivatives of v with respect to x .
Given a smooth function ω on r0, T s ˆ Rd , we define :

Lpωq “ Er|ωpT , X q ´ gpX q|
2
s ` Er|Btωpτ, X q ´ Hrωspτ, X q|

2
s (3)

where pτ, X q are independant random variables „ vT b vd supported on r0, T s ˆ Rd .

Remark
From the definition of v, it is clear that v is a solution to (1) if and only if v achieves the
minimum of L. However, optimization problem (3) is infinite dimensional and not
feasible numerically.
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A reminder on the Deep Galerkin Algorithm
Mathematical Foundations

The idea is therefore to parametrize the space of smooth functions ω by the class of
neural networks Uθ on r0, T s ˆ Rd which reduces to a finite dimensional optimization
problem :

inf
θ

LpUθq (4)

Remark
‚ The optimization problem (4) is done through stochastic gradient descent based on

the expectation representation LpUθq “ E
“

lpθ, τ, X q
‰

with

lpθ, t, xq “ |UθpT , xq ´ gpxq|
2

` |BtUθpt, xq ´ HrUθspt, xq|
2

‚ Equation (4) is finite dimensionnal because θ represents the values of the weights
and the bias of the NN which are finite dimensionnal and optimized during the
training process.
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An application in option pricing
Application in the B ´ S model

We will do some experiments of the Deep Galerkin for the B ´ S in dimension d “ 1 for
different type of PDE. Under option pricing theory, for an European option with price at
time t denoted by Cpt, Stq we know that we have the following PDE representation for
the option price C defined on r0, T s ˆ R`

˚ as :

BtC ` LC ´ rC “ 0, pt, xq P r0, T q ˆ R`
˚ (5)

CpT , xq “ gpxq, x P R`
˚

where the infinitemisal generator is given by :

Lvpt, xq “ rxBx vpt, xq `
1
2σ2x2

B
2
x vpt, xq

Remark
For the numerical experiments, we choose r “ 0.02, σ “ 0.2 , T “ 1 and we choose in
this special setting τ and X to take values in r0, T pˆp0, 200q through a meshgrid. In
usual case, people assume that τ „ Upr0, T sq and X „ UpDq where D is a bounded
domain of interest.
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Numerical results in the B ´ S setting
A forward contract

Figure: Evolution of the training and validation losses for the learning process of the PDE (5)
related to the price of a forward contract (Case of gpxq “ x ´ K for K “ 100)

Remark
We recover the linear relation between St and Cpt, Stq for the case of the forward
contract as we know that Cpt, Stq “ St ´ Ke´rpT ´tq.
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Numerical results in the B ´ S setting
A Call Option

Figure: Evolution of the training and validation losses for the learning process of the PDE related
to the price of a call option (Case of gpxq “ px ´ Kq` for K “ 100)

Remark
We recover the classic form for a call option noticing that t Ñ Cpt, Sq is an increasing
function.
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Numerical results in the B ´ S setting
PDE for the CVA of a Call option

It can be shown that the Credit Valuation Adjustment (CVA) in a default intensity model
(such that PpτC ě tq “ e´λC t

q is solution to the following PDE :

Btϕpt, xq ` Lϕpt, xq ´ pr ` λC
qϕpt, xq ` p1 ´ Rc

qpVtq
`λC

“ 0, pt, xq P r0, T pˆR`
˚

(6)
ϕpT , xq “ 0, x P R`

˚

where :
‚ λC is the default intensity of the counterparty assumed to be constant.
‚ RC is the recovery rate in case of default of the counterparty.
‚ pVtq

` is the value of the exposure of the portfolio / derivative involved between
both counterparties.

Remark
In our numerical experiments, we will take the portfolio to be a standard call option with
same characterics as before but with K “ 110. Moreover, we will assume RC

“ 0 and
show the results for 2 different values of λC .
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Numerical results in the B ´ S setting
CVA on a Call Option with low λC

Figure: Evolution of the training and validation losses for the learning process of the PDE (6)
related to the CVA price of a call option with λC “ 0.1

Remark
We can see the terminal condition from the surface shape with CVApT , .q “ 0 and see
that the function S Ñ CVApt, Sq is an increasing function which is an expected behavior
from the CVA definition.
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Numerical results in the B ´ S setting
CVA on a Call Option with high λC

Figure: Evolution of the training and validation losses for the learning process of the PDE (6)
related to the CVA price of a call option with λC “ 0.4

Remark
We can see the overall value of CVA is higher in the case of λC

“ 0.4 than in the case of
λC

“ 0.1 which just explains that the counterparty is more likely to default and so the
CVA to be paid by the defaultable counterparty has to be higher.
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Deep Galerkin for PDE
Coupled Systems of PDE for KVA and FVA

In a toy model (See [8] if you are interested in how we can obtain such system of PDE),
we can show that KVA and FVA are solution to the following coupled systems of PDE
associated respectively with w and v :

Bv
Bt ` Lv ` λpmaxpαf σS|

Bv
BS ´ ∆bs |, wq ` v ´ ubsq

´
´ rv “ 0 pt, xq Ps0, T rˆR`

˚ (7)

Bw
Bt ` Lw ` hmaxpαf σS|

Bv
BS ´ ∆bs |, wq ´ pr ` hqw “ 0, pt, xq Ps0, T rˆR`

˚ (8)

vpT , Sq “ wpT , Sq “ 0 x P R`
˚

where h represents a dividend rate, α represents a mishedge parameter, λ is a funding
rate and f is a quantile level. ubs and ∆bs represent the call and delta price of a single
call option of same characteristics as before.

Remark
In this couple PDE systems, we parametrize two neural networks U1pθ1q and U2pθ2q and
we solve inf

θ“pθ1,θ2q
LpUpθqq where L represents the operator associated to system of PDE

(7) and (8). For the numerical experiments, we took α “ 0.3, λ “ 0.02, f “ 1.2 and
h “ 0.1.
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Deep Galerkin for PDE
System of coupled PDEs for KVA and FVA

Figure: Evolution of the training and validation losses for the learning process of PDE for the
coupled systems of PDE (7) and (8) for FVA and KVA and associated surfaces
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A reminder on the Deep BSDE Solver
Mathematical Foundations

We are going to present some simple applications of the Deep BSDE Solver for solving
PDE with the following form :

Btv ` Lv ` f px , v , ∇x vq “ 0, pt, xq P r0, T q ˆ Rd (9)

vpT , xq “ gpxq, x P Rd

From this PDE, we can consider a probability space (Ω, F , Pq which supports a brownian
motion W “ pWtqtě0 with his natural filtration F “ pFtqtě0 and we can introduce the
forward process X “ pXtqtě0 associated to the operator L. Assuming this process known,
we can consider the following pair of processes pY , Zq solving the following BSDE :

´ dYt “ f pt, Xt , Yt , Ztq ´ ZtdWt , 0 ď t ď T (10)
YT “ gpXT q
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A reminder on the Deep BSDE Solver
Mathematical Foundations

Applying Itô Formula to the process vpt, Xtq with v solving the PDE (9), we can see :

vpT , XT q “ vpt, Xtq `

ż T

t
pBtv ` Lrv sqps, Xsqds `

ż T

t
∇x vps, Xsq

JdWs

“ vpt, Xtq ´

ż T

t
f ps, vps, Xsq, ∇x vps, Xsqqds `

ż T

t
∇x vps, Xsq

JdWs

Differentiating this equation, we see that the process vpt, Xtq solves the following BSDE :

´dvpt, Xtq “ f pt, vpt, Xtq, ∇x vpt, Xtqq ´ ∇x vpt, Xtq
JdWt

vpT , XT q “ gpXT q

From existence and unicity of the theory of BSDE under suitable assumptions on f and
g , we have the following representation for the pair pY , Zq :

Yt “ vpt, Xtq dt b dP a.e (11)
Zt “ ∇x vpt, Xtq dt b dP a.e (12)
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A reminder on the Deep BSDE Solver
Algorithm Description

The Deep BSDE Algorithm is based on the representation of the equations (11) and (12)
as it means that founding v is equivalent to founding Y . Therefore, going back to
equation (10), we can look for discretization of Y and approximating vpti , Xti q as Yti .
However, note that the scheme is backward in time which would need to approximation
conditional expectations at each time. Therefore, the idea of the algorithm is to treat the
process Y as a forward process for an unknown y0 and for process Z . We can then define
the following loss L for a given y0 P R and Z a squared adapted integrable process as :

Lpy0, Zq “ Er|Y y0,Z
T ´ gpXT q|

2
s (13)

Therefore, as y0 and Z are unknown parameters, they can be learnt through neural
networks assuming that Z “ Zps, Xsq. The idea is then to learn through a neural network
the mapping pt, xq Ñ Zpt, xq using a neural network Zθ and to put y0 as a trainable
parameter of this neural network which will be learnt during the training process.

Deep Learning for PDE Machine Learning in Finance 19 March 2025 17 / 31



Dr
af

t

A reminder on the Deep BSDE Solver
Algorithm Description

Therefore, the idea is to minimize the following loss error :

Lpθq “ Er|Y θ
T ´ gpXT q|

2
s (14)

where we set :

Y θ
t “ yθ

0 ´

ż t

0
f pXs , Y θ

s , Zθ
ps, Xsqqds `

ż t

0
Zθ

ps, Xsq
Jσps, XsqdWs (15)

Remark
Of course, for the numerical experiments, we will discretize (15) using an Euler Scheme
on a grid 0 “ t0 ă t1 ă . . . ă tN “ T with time step ∆t : starting from Y θ

0 “ yθ
0 , we

have :

Y θ
ti`1 “ Y θ

ti ´ f
`

Xti , Y θ
ti , Zθpti , Xti q

J
˘

∆t ` σpti , Xti q∆Wti , i “ 0, . . . , n ´ 1
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An application in option pricing
Application in the B ´ S model

We now assume a B ´ S model dynamics with the underlying dynamics S “ pS1, . . . , Sd
q

and W “ pW 1, . . . , W d
q multidimensional brownian motion given by :

dS i
t “ S i

tprdt ` σi dW i
t q, S i

0 P pR`
˚ q, i “ 1, . . . , d (16)

Under the Option pricing theory in the B ´ S model, we have the PDE (5) :

BtC ` LC ´ rC “ 0, pt, xq P r0, T q ˆ pR`
˚ q

d

CpT , xq “ gpxq, x P pR`
˚ q

d

where the infinitemisal generator is given by :

Lvpt, xq “ bpt, xq
JDx vpt, xq `

1
2Tr

`

σpt, xqσpt, xq
JD2

x vpt, xq
˘

Remark
Therefore, in this setting, the equivalent functions f and g are given by :

‚ f pt, x , y , zq “ ´ry
‚ gpxq the option payoff
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Numerical Results in the B ´ S setting
A Call Option

Figure: Loss and y0 evolution for the B ´ S PDE (5) for a Call option for d “ 1 with payoff
gpxq “ px ´ Kq` with r “ 0.05, σ “ 0.2, T “ 1, x0 “ 1 and K “ 1.

Table: up0, x0q Approximation for the Basket Call Option

True Value Estimate Value
up0, x0q 0.1045 0.1043
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Numerical Results in the B ´ S setting
A Basket Call Option

Figure: Loss and y0 evolution for the B ´ S PDE (5) for a Basket Call option for d “ 100 with
payoff gpxq “ p

řd
i“1 xi ´ dKq` with r “ 0.05 and σi “ 0.2 for i “ 1, . . . , d and with

uncorrelated pW i qi“1,...,d with x0 “ p1, . . . , 1q P Rd .

Table: up0, x0q Approximation for the Basket Call Option

Estimate Value
up0, x0q 4.8771

Deep Learning for PDE Machine Learning in Finance 19 March 2025 21 / 31



Dr
af

t

Numerical Results in the B ´ S setting
A Put Option

Figure: Loss and y0 evolution for the B ´ S PDE (5) for a Put option for d “ 1 with payoff
gpxq “ pK ´ xq` with r “ 0.05, σ “ 0.2, T “ 1, x0 “ 1 and K “ 1.

Table: up0, x0q Approximation for the Basket Put Option

True Value Estimate Value
up0, x0q 0.05574 0.05568
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Numerical Results in the B ´ S setting
A Basket Put Option

Figure: Loss and y0 evolution for the B ´ S PDE (5) for a Basket Put option for d “ 100 with
payoff gpxq “ pdK ´

řd
i“1 xi q` with r “ 0.05 and σi “ 0.2 i “ 1, . . . , d with uncorrelated

W “ pW 1, . . . , W d q with x0 “ p1, . . . , 1q P Rd .

Table: up0, x0q Approximation for the Basket Put Option

Estimate Value
up0, x0q 0.0051
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Numerical results in the B ´ S setting
A Binary Option

Figure: Loss and y0 evolution for the B ´ S PDE (5) for a Binary option for d “ 1 with payoff
gpxq “ 1xąK .

Table: up0, x0q Approximation for the Binary Option

True Value Estimate Value
up0, x0q 0.5323 0.5307

‚ Impact of the discontinuity of g in the learning process.
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Numerical results for other type of PDE
Allen-Cahn PDE

The Allen-Cahn PDE is a famous PDE given by the following :

Btv ` ∆x v ` v ´ v 3
“ 0 pt, xq P r0, T pˆRd , (17)

vpT , xq “
1

2 ` 2
5 ∥x∥2

x P Rd ,

In this case, we can recover the BSDE setting with the following forward process :

dXt “
?

2IdˆddWt P Rd

and with the pair of process pY , Zq by setting :
‚ f pt, x , y , zq “ y ´ y 3 with y valued P R

‚ gpxq “ 1
2` 2

5 ∥x∥2 P R

Remark
In the numerical experiments, we will set T “ 3

10 with x0 “ 0 and d “ 100 and try to
recover the true estimate value of the PDE with such a setting like in the article [4].
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Numerical results for other type of PDE
Allen-Cahn equation

Figure: Loss and y0 evolution for the Allen Cahn PDE (17)

Table: up0, x0q Approximation for the Allen Cahn Equation

True Value Estimate Value
up0, x0q 0.0528 0.0529
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Numerical results for other type of PDE
Semi linear PDE with quadratic gradient term

We consider the following PDE which can be shown to be the PDE arising from an HJB
equation in optimal control :

Btv ` ∆x v ´
1
2 |∇x v |

2
“ 0, pt, xq P r0, T q ˆ Rd , (18)

vpT , xq “ gpxq, x P Rd ,

In this case, we can recover the BSDE setting with the following forward process :

dXt “
?

2IdˆddWt P Rd

and with the pair of process pY , Zq by setting :
‚ f pt, x , y , zq “ ´∥z∥2 with z P R1ˆd

Remark
For the numerical experiments, we choose x0 “ 0, d “ 100, and gpxq “ lnp 1

2 p1 ` ∥x∥2
q

with semi-explicit form given by Hopf-Cole transformation for benchmark value :

vp0, x0q “ ´ln
ˆ

E
”

exp
`

´ gpx0 ` σWT q
˘

ı

˙
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Numerical results for other type of PDE
Linear Quadratic control problem

Figure: Loss and y0 evolution for the Linear Quadratic control problem from PDE (18)

Table: y0 “ up0, x0q Approximation for the Linear Quadratic control problem

True Value Estimate Value
up0, x0q 4.5901 4.5988
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Deep Learning for PDE
Key Takeaways of the Deep BSDE Solver

Pros :
‚ Probabilistic representation is helpful for the choice of training samples,

convergence analysis.
‚ Very efficient in very high dimension d ąą 1.
‚ Easy implementation of neural networks through Python packages like

PyTorch or Tensorflow. See the Python notebook.

Cons :
‚ Can be unstable with a large number of timesteps N.
‚ Can only be used for semi-linear PDEs through their probabilistic

representation.
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Conclusion
Global conclusion

Sum up of the presentation :
‚ Deep learning methods provide a breakthrough for the computation challenge

of solving high dimensional nonlinear problem arising in PDEs and stochastic
control.

‚ Easy implementation of neural networks with Python packages.
‚ Deep Galerkin can "always" be used when PDE too complex with no

probabilistic representation.

To Go Further on Deep Learning methods for PDE and MDP :
‚ What about algorithms for solving American Options in High Dimension which

are related to variation inequalities ?See the BDP algorithm in [6].
‚ Extension of Deep BSDE Solver for Jump Processes : See [3].
‚ Other applications of Deep Learning : See [1] and [2] for applications of Deep

Learning for solving Markov decision processes (MDP).
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