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Main topic of the lecture

Objectives :
e Present some applications of the Deep Galerkin Algorithm and Deep BSDE
Solver for solving PDE.
e Show how both of theses algorithms can be efficiently implemented in Python
with PyTorch.
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A reminder on the Deep Galerkin Algorithm

Mathematical Foundations

We are giving to present some applications of the Deep Galerkin algorithm for solving
PDE in a general form :

ou(t,x) = H[V](t,x) (t,x)e[0, T) x R? (1)
v(T,x) =g(x), xe€ RY (2)

where 7 is an operator which can contain multiples derivatives of v with respect to x.
Given a smooth function w on [0, T] x R? , we define :

L(w) = E[lw(T, X) — g(X)[*] + E[|0ww (7, &) = H[w](r, X)[’] (3)
where (7, X') are independant random variables ~ vr ® vy supported on [0, T] x Re.

Remark

From the definition of v, it is clear that v is a solution to (1) if and only if v achieves the
minimum of L. However, optimization problem (3) is infinite dimensional and not
feasible numerically.
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A reminder on the Deep Galerkin Algorithm

Mathematical Foundations

The idea is therefore to parametrize the space of smooth functions w by the class of
neural networks Uy on [0, T] x RY which reduces to a finite dimensional optimization
problem :

inf L(Us) (4)

Remark
o The optimization problem (4) is done through stochastic gradient descent based on
the expectation representation L(Uy) = E[/(6, 7, X)| with
100, t, %) = [Us (T, x) — g(x)| + |0:ho (£, x) — H[Us] (2, x)|?

e Equation (4) is finite dimensionnal because 0 represents the values of the weights
and the bias of the NN which are finite dimensionnal and optimized during the
training process.
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An application in option pricing
Application in the B — S model

We will do some experiments of the Deep Galerkin for the B — S in dimension d = 1 for
different type of PDE. Under option pricing theory, for an European option with price at
time t denoted by C(t, S:) we know that we have the following PDE representation for
the option price C defined on [0, T] x R as:

C+LC—rC=0, (t,x)e[0,T) xR} (5)
C(T,x) =g(x), xeRy

where the infinitemisal generator is given by :
1
Lv(t,x) = rxdxv(t,x) + Eazxzéiv(t,x)

Remark

For the numerical experiments, we choose r = 0.02, 0 = 0.2, T = 1 and we choose in
this special setting T and X to take values in [0, T(x(0,200) through a meshgrid. In
usual case, people assume that 7 ~ U([0, T]) and X ~ U(D) where D is a bounded
domain of interest.
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Numerical results in the B — S setting

A forward contract

Price of a Forward Contract
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Figure: Evolution of the training and validation losses for the learning process of the PDE (5)
related to the price of a forward contract (Case of g(x) = x — K for K = 100)

Remark

We recover the linear relation between S; and C(t,S;) for the case of the forward
contract as we know that C(t,S;) = S, — Ke "1,
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Numerical results in the B — S setting
A Call Option
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Figure: Evolution of the training and validation losses for the learning process of the PDE related
to the price of a call option (Case of g(x) = (x — K)* for K = 100)

Remark

We recover the classic form for a call option noticing that t — C(t,S) is an increasing
function.
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Numerical results in the B — S setting
PDE for the CVA of a Call option

It can be shown that the Credit Valuation Adjustment (CVA) in a default intensity model
(such that P(rc = t) = e’ACt) is solution to the following PDE :

0ed(t,x) + Lo(t,x) — (r + A)p(t,x) + (1 — R)(Ve)TAS =0, (t,x) e [0, T(xR}
(6)
#(T,x) =0, xeRE

where :
o AC is the default intensity of the counterparty assumed to be constant.
e RC is the recovery rate in case of default of the counterparty.

o (V)% is the value of the exposure of the portfolio / derivative involved between
both counterparties.

Remark

In our numerical experiments, we will take the portfolio to be a standard call option with
same characterics as before but with K = 110. Moreover, we will assume R =0 and
show the results for 2 different values of \€.
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Numerical results in the B — S setting
CVA on a Call Option with low NE

CVA of a Call Option for A€=0.1
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Figure: Evolution of the training and validation losses for the learning process of the PDE (6)
related to the CVA price of a call option with A€ = 0.1

Remark

We can see the terminal condition from the surface shape with CVA(T,.) = 0 and see
that the function S — CVA(t, S) is an increasing function which is an expected behavior
from the CVA definition.
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Numerical results in the B — S setting
CVA on a Call Option with high A€

CVA of a Call Option for A€ = 0.4

Evolution of the loss during the Learning Process
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Figure: Evolution of the training and validation losses for the learning process of the PDE (6)
related to the CVA price of a call option with A¢ = 0.4

Remark

We can see the overall value of CVA is higher in the case of \* = 0.4 than in the case of
AS = 0.1 which just explains that the counterparty is more likely to default and so the
CVA to be paid by the defaultable counterparty has to be higher.
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Deep Galerkin for PDE

Coupled Systems of PDE for KVA and FVA

In a toy model (See [8] if you are interested in how we can obtain such system of PDE),
we can show that KVA and FVA are solution to the following coupled systems of PDE
associated respectively with w and v :

% +Lv+ )\(max(af05| — Dps|,w) +v—ups)” —rv=0 (t,x)€]0, T[xRf (7)
aa—t + Lw + hmax(anS\% — Dpsl,w) = (r+h)w =0, (tx)€]0, T[xRf (8)

v(T,S)=w(T,S)=0 xeR{

where h represents a dividend rate, « represents a mishedge parameter, A is a funding
rate and f is a quantile level. ups and Aps represent the call and delta price of a single
call option of same characteristics as before.

Remark

In this couple PDE systems, we parametrize two neural networks Uy(61) and U>(62) and

we solve o lnf L(Ll (0)) where L represents the operator associated to system of PDE
= 1:

(7) and (8) For the numerical experiments, we took o = 0.3, A = 0.02, f = 1.2 and
h=0.1.
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Deep Galerkin for PDE

System of coupled PDEs for KVA and FVA
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Figure: Evolution of the training and validation losses for the learning process of PDE for the

coupled systems of PDE (7) and (8) for FVA and KVA and associated surfaces
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A reminder on the Deep BSDE Solver

Mathematical Foundations

We are going to present some simple applications of the Deep BSDE Solver for solving
PDE with the following form :

OV + Lv + f(x,v,Viv) =0, (t,x)€[0,T) xR’ (9)
v(T,x) =g(x), x¢€ RY
From this PDE, we can consider a probability space (2, F,P) which supports a brownian
motion W = (W;)=0 with his natural filtration F = (F;)¢>0 and we can introduce the

forward process X = (X:)t>0 associated to the operator £. Assuming this process known,
we can consider the following pair of processes (Y, Z) solving the following BSDE :

- dyt = f(t, Xt7 Yth) - ngth7 0 < t < T (10)
Yr = g(X7)
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A reminder on the Deep BSDE Solver

Mathematical Foundations
Applying 1t6 Formula to the process v(t, X;) with v solving the PDE (9), we can see :

v(T, X7) = v(t, X;) +J

t

T T
v(t, X:) —f f(s,v(s,Xs), Vev(s, X))ds +f Vav(s, Xs) ' dWs
t t

T T
(0ev + L[V]) (s, Xs)ds + J Vav(s, Xs) " dWs
t

Differentiating this equation, we see that the process v(t, X;) solves the following BSDE :

—dv(t, X;) = F(t,v(t, X:), Vav(t, X;)) — Vv (t, Xe) | dW,
v(T,Xr) = g(X7)

From existence and unicity of the theory of BSDE under suitable assumptions on f and
g, we have the following representation for the pair (Y, Z) :

Ye=v(t,X:) dt®dP a.e (11)
Z; =Vyv(t,X:) dt®@dP a.e (12)
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A reminder on the Deep BSDE Solver

Algorithm Description

The Deep BSDE Algorithm is based on the representation of the equations (11) and (12)
as it means that founding v is equivalent to founding Y. Therefore, going back to
equation (10), we can look for discretization of Y and approximating v(t;, Xy) as Y.
However, note that the scheme is backward in time which would need to approximation
conditional expectations at each time. Therefore, the idea of the algorithm is to treat the
process Y as a forward process for an unknown yp and for process Z . We can then define
the following loss L for a given yo € R and Z a squared adapted integrable process as :

Ly, Z) = E[[Y7"Z —g(X7)[] (13)

Therefore, as yo and Z are unknown parameters, they can be learnt through neural
networks assuming that Z = Z(s, X;). The idea is then to learn through a neural network
the mapping (t,x) — Z(t, x) using a neural network Z% and to put yo as a trainable
parameter of this neural network which will be learnt during the training process.
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A reminder on the Deep BSDE Solver

Algorithm Description

Therefore, the idea is to minimize the following loss error :

L(0) = E[|Y7 — g(X1)’] (14)

where we set :
t t
. f F(X., Y2, 2%(s, X,))ds +f 2%(s, %) T (5, X)W, (15)
0 0

Remark

Of course, for the numerical experiments, we will discretize (15) using an Euler Scheme
onagrid0 =t <t <..<ty=T with time step At : starting from Y{ = y¢, we
have :

YO =Y — (X, YY), Zo(ti, Xe) ) At + 0 (81, Xe ) AW, i=0,...,n—1
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An application in option pricing
Application in the B — S model

We now assume a B — S model dynamics with the underlying dynamics S = (S',...,5%)
and W = (W?,..., W) multidimensional brownian motion given by :
dS; = Si(rdt + o'dW/), Sje (Rf), i=1,...,d (16)

Under the Option pricing theory in the B — S model, we have the PDE (5) :

C+LC—rC=0, (t,x)e[0,T)x (Rf)?
C(T,x) =g(x), xeRf)

where the infinitemisal generator is given by :

Lu(t,x) = b(t, )T Dev(t, x) + %Tr(a(t, x)o(t, x) T D2v(t, x))
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Numerical Results in the B —

A Call Option

Evolution of the loss

S setting
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Figure: Loss and yp evolution for the B — S PDE (5) for a Call option for d = 1 with payoff
g(x) = (x —K)* with r =0.05,0 =02, T=1,x=1and K=1.

Table: u(0, xp) Approximation for the Basket Call Option

True Value

Estimate Value

u(0, xo)

0.1045

0.1043
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Numerical Results in the B — S setting
A Basket Call Option

Evolution of the loss Evolution of yp for a Basket Call price for d = 100
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Figure: Loss and yp evolution for the B — S PDE (5) for a Basket Call option for d = 100 with
payoff g(x) = ( ?:1 xi — dK)t with r =0.05 and 0/ = 0.2 for i =1,...,d and with

uncorrelated (W"),-:LA_A,d with xo = (1,...,1) € RY.

Table: u(0,xp) Approximation for the Basket Call Option

Estimate Value
u(0, x0) 4.8771
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Numerical Results in the B — S setting
A Put Option

Evolution of the loss
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Figure: Loss and yp evolution for the B — S PDE (5) for a Put option for d = 1 with payoff
g(x) = (K—x)* withr=0.05,0 =02, T=1xg=1and K=1.

Table: u(0, xp) Approximation for the Basket Put Option

True Value

Estimate Value

u(0, xo) 0.05574

0.05568
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Numerical Results in the B — S setting
A Basket Put Option

Evolution of the loss Evolution of yp for a Put price for d =100
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Figure: Loss and yp evolution for the B — S PDE (5) for a Basket Put option for d = 100 with
payoff g(x) = (dK — 27:1 x;)t with r =0.05 and ¢/ =0.2 j=1,...,d with uncorrelated
W= (W ..., W) with xo = (1,...,1) € RY.

Table: u(0, xp) Approximation for the Basket Put Option

Estimate Value
u(0, x0) 0.0051
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Numerical results in the B — S setting

A Binary Option

Evolution of the loss
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Figure: Loss and yg evolution for the B — S PDE (5) for a Binary option for d = 1 with payoff

g(x) = Ly=k.

Table: u(0, xg) Approximation for the Binary Option

True Value

Estimate Value

U(Oa XO)

0.5323

0.5307

e Impact of the discontinuity of g in the learning process.
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Numerical results for other type of PDE
Allen-Cahn PDE

The Allen-Cahn PDE is a famous PDE given by the following :

v+ Av+v—vP=0 (tx)e[0, T(xRY, (17)
1 d
v(T,x) = ———— x€eRY,
2+ Z|x|?

Deep Learning for PDE Machine Learning in Finance July 25, 2025 25/29



Numerical results for other type of PDE

Allen-Cahn equation
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Figure: Loss and yg evolution for the Allen Cahn PDE (17)

Table: u(0, xp) Approximation for the Allen Cahn Equation

True Value | Estimate Value
u(0,x0) 0.0528 0.0529
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Numerical results for other type of PDE

Semi linear PDE with quadratic gradient term

We consider the following PDE which can be shown to be the PDE arising from an HJB
equation in optimal control :

v + Agv — %|va|2 —0, (t,x)e[0,T) xR, (18)

V(T,X) =g(x), XERda
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Numerical results for other type of PDE

Linear Quadratic control problem

Evolution of the loss Evolution of yp : Linear Quadratic Control Problem
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Figure: Loss and yg evolution for the Linear Quadratic control problem from PDE (18)

Table: yo = u(0, xg) Approximation for the Linear Quadratic control problem

True Value | Estimate Value
u(0,x0) 4.5901 4.5988
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