## 1A - Théorie des Probabilités. 2024-2025 Prof. Brunel



## EXAMEN FINAL (SESSION PRINCIPALE)

- 1. Durée de l'examen: 2 heures.
- 2. Feuille recto-verso A4 manuscrite autorisée. Appareils électroniques interdits.
- 3. L'examen comprend un total de 33 points. Votre note sera le minimum entre le nombre de points obtenus et 20.
- 4. Il est impératif que les exercices et toutes les questions soient traitées dans l'ordre, quitte à laisser de l'espace entre chaque question. Les copies ne respectant pas cette règle ne seront pas corrigées (et recevront donc automatiquement la note 0).
- 5. Rappel : les copies mal présentées et/ou illisibles ne seront pas corrigées (et recevront donc automatiquement la note 0).
- 6. L'accent sera mis sur la rigueur et la précision de vos réponses. Les réponses non justifiées ne seront pas prises en compte.
- 7. Bon courage!

## Exercice 1 (15 points)

- 1. (1 pt) Soit X une variable aléatoire réelle de loi normale centrée réduite. La variable aléatoire  $\max(X,0)$  admet-elle une densité par rapport à la mesure de Lebesgue ? Si oui, la déterminer.
- 2. (1 pt) Soit X une variable aléatoire réelle de loi uniforme sur [0,1] et Y une variable aléatoire de loi de Bernoulli de paramètre  $p \in [0,1]$ , indépendante de X. La variable aléatoire X+Y admet-elle une densité par rapport à la mesure de Lebesgue ? Si oui, la déterminer.
- 3. (2 pts) Soient X et Y deux variables aléatoires réelles i.i.d de loi normale centrée réduite. Soit  $\varepsilon$  une variable aléatoire réelle indépendante de (X,Y), satisfaisant  $P(\varepsilon=1)=P(\varepsilon=-1)=1/2$ .
- $\circ$ ,  $\circ$  a) Le vecteur aléatoire (X+Y,X-Y) est-il gaussien?
- b) Le vecteur aléatoire (X + Y, X + Y) est-il gaussien?
- ورم c) Le vecteur aléatoire  $(X+Y,X+\varepsilon Y)$  est-il gaussien?
- وي d) Le vecteur aléatoire  $(X + \varepsilon Y, X \varepsilon Y)$  est-il gaussien?
- 4. (6 pts) Soit  $\theta > 0$  et soient X, Y deux variables aléatoires réelles i.i.d de loi uniforme sur  $[0, \theta]$ .
  - a) Expliquer pour quoi on peut définir une variable aléatoire notée  $\sqrt{X/Y}$  de manière non ambiguë.
  - b) Montrer que  $\sqrt{X/Y}$  admet une densité par rapport à la mesure de Lebesgue, qu'on déterminera (pour vérifier la cohérence de votre résultat, posez-vous la question suivante : le résultat doit-il dépendre du paramètre  $\theta$ ?).
  - c) Montrer que la variable aléatoire  $\sqrt{X/Y}$  est intégrable.
    - d) Déterminer  $\mathbb{E}[\sqrt{X/Y}|X]$  et  $\mathbb{E}[\sqrt{X/Y}|Y]$ .
- 5. (2 pts) Pour tout entier  $n \geq 1$ , soit  $X_n$  une variable aléatoire de loi Exp(1/n). Montrer que  $X_n$  ne converge pas en distribution.
- 6. (3 pts) Soit X un vecteur aléatoire réel de taille  $d \geq 1$  de carré intégrable. Soit  $\Sigma$  sa matrice de variance-covariance, et soit r son rang. Montrer qu'il existe un sous-espace affine A de  $\mathbb{R}^d$  de dimension r tel que  $X \in A$  presque sûrement.

## Exercice 2 (18 points)

Soient  $a \in \mathbb{R}$  et  $\lambda > 0$ . Pour  $x \in \mathbb{R}$ , on pose  $f(x) = \lambda e^{-\lambda(x-a)} \mathbb{1}_{x>a}$ .

- 1. (1 pt) Vérifier que la fonction f ainsi définie est une densité par rapport à la mesure de Lebesgue. Dans toute la suite de l'exercice, on considère une suite  $(X_n)_{n\geq 1}$  de variables aléatoires réelles i.i.d admettant f comme densité par rapport à la mesure de Lebesgue.
- 2. (1 pt) Vérifier que  $X_1-a$  suit la loi exponentielle de paramètre  $\lambda.$
- 3. (6 pts) Pour tout  $n \ge 1$ , on pose  $\hat{a}_n = \min(X_1, \dots, X_n)$  et  $\hat{\lambda}_n = \frac{1}{\bar{X}_n \hat{a}_n}$ .



- a) Vérifier que pour tout  $n \geq 1$ ,  $\bar{X}_n > \hat{a}_n$  presque sûrement, et que  $\hat{\lambda}_n$  est donc bien définie de manière non ambiguë.
- **2** b) Déterminer la fonction de répartition de  $n(\hat{a}_n a)$ , pour tout  $n \ge 1$ .
- c) En déduire que  $\hat{a}_n \xrightarrow[n \to \infty]{P} a$ .
- d) Montrer que  $\hat{a}_n \xrightarrow[n \to \infty]{\text{p.s}} a$ .
- ( e) Montrer que  $\hat{\lambda}_n \xrightarrow[n \to \infty]{P} \lambda$ .
- 4. (1 pt) Montrer que  $\sqrt{n}(\hat{a}_n a) \xrightarrow[n \to \infty]{P} 0$ .
- 5. (2 pts) En déduire que  $\sqrt{n}(\bar{X}_n \hat{a}_n 1/\lambda)$  converge en distribution vers une loi normale dont on déterminera les paramètres.
- 6. (3 pts) Soit  $(T_n)_{n\geq 1}$  une suite de variables aléatoires strictement positives presque sûrement et  $\theta > 0$ . Supposons que  $\sqrt{n}(T_n \theta) \xrightarrow[n \to \infty]{\text{(d)}} Z$ , où Z est une variable aléatoire réelle.
  - (a) Montrer que  $T_n \xrightarrow[n \to \infty]{P} \theta$ .
  - 2 b) Montrer que  $\sqrt{n}\left(\frac{1}{T_n} \frac{1}{\theta}\right)$  converge en distribution vers une variable aléatoire qu'on déterminera.
- 7. (1 pt) Déduire des questions précédentes que  $\sqrt{n}(\hat{\lambda}_n \lambda) \xrightarrow[n \to \infty]{(d)} \mathcal{N}(0, \lambda^2)$ .
- 8. (3 pts) Fixons  $\alpha \in (0,1)$ . Proposer deux suites d'intervalles de confiance de niveau asymptotique  $\alpha$  pour  $\lambda$  et pour a respectivement. On rappelle qu'une suite d'intervalles de confiance de niveau asymptotique  $\alpha$  pour  $\lambda$  (resp. a) est une suite  $(I_n)_{n\geq 1}$  d'intervalles, dont les bornes sont des variables aléatoires dont l'expression ne dépend ni de  $\lambda$  ni de a, telle que  $P(I_n \ni \lambda) \xrightarrow[n \to \infty]{} 1 \alpha$  (resp.  $P(I_n \ni a) \xrightarrow[n \to \infty]{} 1 \alpha$ ).