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Introduction
Context and motivations

Clasical MFC problem
The classical mean-field control (MFC) problem can be summarized as the following
optimization problem

inf
αPA

Jpαq :“ E
”

ż T

0
f pX α

t , PXα
t

, αtqdt ` gpXT , PXα
T

q

ı

(1)

where A defines a suitable class of control and where the controlled state
X α

“ pX α
t qtPr0,T s dynamics is given by :

dX α
t “ bpX α

t , PXα
t

, αtqdt ` σpX α
t , PXα

t
, αtqdWt ,

X α
0 “ ξ (2)

where the random variables are defined on an abstract filtered probability space
pΩ, F , F, Pq supporting a brownian motion W and an initial random variable ξ.

Ñ 2 well known methods to study the optimization problem (1)-(2) : Dynamic
programming and Pontryagin maximum principle.
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Introduction
Context and motivations

Ñ Extend the known MFG theory to non exchangeable interactions. A lot of litterature
has been developed recently in the litterature with the Graphons theory (see [6] and [7]
for instance) where an agent labeled by u P I “ r0, 1s interacts with the other agents
through the probability measure

ş

I Gpu,vqPXv
t

pdxqdv
ş

I Gpu,vqdv q.

Ñ Our goal is to extend the framework to non exchangeable mean-field systems without
specifying the type of interaction and where the dynamics will depend through a term
depending on the collection of laws pPXv

t
qvPI ( see De Crescenzo, Fuhrman, Kharroubi

and Pham [1] for the first introduction to this framework).
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Introduction
The NE-MFC problem

‚ Central planner aims to control a system of interacting heterogenous agents :

Non Exchangeable Mean Field SDE

dX u
t “ bpu, X u

t , αu
t , pPXv

t
qvPIqdt ` σpu, X u

t , αu
t , pPXv

t
qvPIqdW u

t , 0 ď t ď T , u P I, (3)
X u

0 “ ξu.

Ñ Minimize over a collection of processes α “ pαu
quPI in a suitable class A the following

cost functional :

Cost Functional

Jpαq “

ż

I
E

“

ż T

0
f pu, X u

t , αu
t , pPXv

t
qvPIqdt ` gpu, X u

T , pPXv
T

qvPIq
‰

du (4)

Ñ Compute V0 “ Jpα˚
q where α˚ is a minimizor of J .
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Introduction
Goal of this presentation

Objectives :
‚ Adapt the Pontryagin Maximum Principle to mean field control for non

exchangeable mean field systems (NE-MFC) to find necessary and sufficient
conditions for the characterization of an admissible optimal control α.

‚ Propose an illustration in the Linear Quadratic (LQ) case with an application to
systemic risk for heterogeneous banks.
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Some preliminaries tools
Definition of L2`

P2pRd
q
˘

Following the NE ´ MFC setting, we need to introduce a suitable space for the collection
of measures which we will denote as L2

pI; P2pRd
q
˘

:“ L2`

P2pRd
q
˘

.

Definition of L2`

P2pRd q
˘

:

The space L2`

P2pRd
q
˘

is defined as follows :

tµ “ pµu
quPI s.t I Q u ÞÑ µu

P P2pRd
q is measurable and

ż

I

ż

Rd
|x |

2µu
pdxqdu ă `8u.

‚ The measurability is understood in the Borel sense given the topological properties of
P2pRd

q.
‚ The space L2`

P2pRd
q
˘

is endowed with the norm :

W2pµ, νq
2

“

ż

I
W2pµu, νu

q
2du (5)
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Some preliminaries tools
A notion of derivative in L2`

P2pRd
q
˘

A derivative in L2`

P2pRd q
˘

(1)

(i) Given a function v : L2pP2pRd qq Ñ R, we say that a measurable function
δ

δm
v : L2pP2pRd qq ˆ I ˆ Rd Q pµ, u, xq ÞÝÑ

δ

δm
vpµqpu, xq P R (6)

is the linear functional derivative (or flat derivative) of v if
1. pµ, xq ÞÑ δ

δm vpµqpu, xq is continuous from L2pP2pRd qq ˆ Rd to R for all u P I;

2. for every compact set K Ă L2pP2pRd qq there exists a constant CK ą 0 such that
ˇ

ˇ

ˇ

ˇ

δ

δm
vpµqpu, xq

ˇ

ˇ

ˇ

ˇ

ď CK p1 ` |x |2q,

for all u P I, x P Rd , µ P K ;
3. we have

vpνq ´ vpµq “

ż 1

0
x

δ

δm
vpµ ` θpν ´ µqq, ν ´ µydθ

“

ż 1

0

ż

I

ż

Rd

δ

δm
vpµ ` θpν ´ µqpu, xq pνu ´ µuqpdxqdudθ

for all µ, ν P L2pP2pRd qq.

Humboldt University of Berlin Maximum Principle for NE-MFC 23 July 2025 9 / 36



Dr
af

t

Some preliminaries tools
A notion of derivative in L2`

P2pRd
q
˘

A derivative in L2`

P2pRd q
˘

(2)
(ii) We say that the function v admits a continuously differentiable flat derivative if

1. v admits a flat derivative δ
δm v satisfying x ÞÑ δ

δm vpµqpu, xq is Fréchet differentiable
with Fréchet derivative denoted by x ÞÑ B δ

δm vpµqpu, xq for all
pµ, uq P L2

pP2pRd
qq ˆ I;

2. pµ, xq ÞÑ B δ
δm vpµqpu, xq is continuous from L2

pP2pRd
qq ˆ Rd to R for all u P I;

3. for every compact set K Ă L2
pP2pRd

qq there exists a constant CK ą 0 such that
ˇ

ˇ

ˇ

ˇ

B
δ

δm vpµqpu, xq

ˇ

ˇ

ˇ

ˇ

ď CK p1 ` |x |
2
q,

for all u P I, x P Rd , µ P K .
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Some preliminaries tools
A notion of derivative in L2`

P2pRd
q
˘

Gateaux derivative on L2`

P2pRd q
˘

Let f : I ˆ Rd ˆ L2`

P2pRd q
˘

Ñ R assumed to have a continuously differentiable linear functional
derivative B δ

δm f . For X , Y P L2`

Ω, F , P, Rd ˘I such that pPXv qvPI , pPY v qvPI P L2pP2pRd qq we
have

lim
ϵÑ0

1
ϵ

`

f pu, x , pPXv `ϵY v qvPI q ´ f pu, x , pPXv qvPI q
˘

“

ż

I
E

“

B
δ

δm
f pu, x , pPXv qvPI qpũ, X ũq ¨ Y ũ‰

dũ

(7)

Ñ The relation (7) is understood as a calculus of variation on L2`

P2pRd q
˘

.
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Some preliminaries tools
A notion of convexity in L2`

P2pRd
q
˘

A notion of convexity in L2`

P2pRd q
˘

Let f : I ˆ Rd
ˆ L2`

P2pRd
q
˘

Ñ R. f is said to be convex if for every u P I, x , x 1
P Rd ,

µ, µ1
P L2`

P2pRd
q
˘

, we have :

f pu, x 1, µ1
q ´ f pu, x , µq ě Bx f pu, x , µq.px 1

´ xq

`

ż

I
E

“

B
δ

δm f pu, x , µqpũ, X ũ
q.pX 1ũ

´ X ũ
q
‰

dũ. (8)

‚ The above convexity definition can be easily extended to the case of functions defined
on I ˆ Rd

ˆ L2`

P2pRd
q ˆ A and reads :

f pu, x 1, µ1, a1
q ´ f pu, x , µ, aq ě Bx f pu, x , µ, aq ¨ pa1

´ aq ` Bαf pu, x , µ, aq ¨ pa1
´ aq

`

ż

I
E

”

B
δ

δm f pu, x , µ, aqpũ, X ũ
q.pX 1ũ

´ X ũ
q

ı

dũ. (9)
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dũ. (8)

‚ The above convexity definition can be easily extended to the case of functions defined
on I ˆ Rd

ˆ L2`

P2pRd
q ˆ A and reads :

f pu, x 1, µ1, a1
q ´ f pu, x , µ, aq ě Bx f pu, x , µ, aq ¨ pa1

´ aq ` Bαf pu, x , µ, aq ¨ pa1
´ aq

`

ż

I
E

”

B
δ

δm f pu, x , µ, aqpũ, X ũ
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Some preliminaries tools
Definition of the Hamiltonian H :

Definition of the Hamiltonian H :
The Hamiltonian R-valued function H of the stochastic optimization problem is defined
as :

Hpu, x , µ, y , z, aq “ bpu, x , µ, aq ¨ y ` σpu, x , µ, aq : z ` f pu, x , µ, aq (10)

where pu, x , µ, y , z, aq P I ˆ Rd
ˆ L2`

P2pRd
q
˘

ˆ Rd
ˆ Rdˆn

ˆ A.

Ñ Compute an optimality criterion involving the Hamiltonian H assuming differentiability
and convexity as defined previously.
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Definition of the controlled system X

We assume to be working on a class of mean-field control for non exchangeable systems
by considering a collection of controlled state proces X “ pX u

quPI described by :

Controlled system X dynamics

#

dX u
t “ bpu, X u

t , pPXv
t

qvPI , αu
t qdt ` σpu, X u

t , pPXv
t

qvPI , αu
t qdW u

t 0 ď t ď T ,

X u
0 “ ξu, u P I.

(11)

where the admissible control processes α “ pαu
quPI are defined as follows. For an

arbitrary Borel measurable function function α : I ˆ r0, T s ˆ Cn
r0,T s ˆ p0, 1q Ñ A, we

define :

αu
t “ αpu, t, W u

.^t , Uu
q, and

ż

I

ż T

0
Er|αu

t |
2
sdtdu ă `8. (12)

Such α is said to be admissible and belongs to A. Moreover, the initial condition
ξ “ pξu

quPI is an admissible initial condition if there exists a Borel mesurable function
ξ : I ˆ p0, 1q Ñ Rd s.t

ξu
“ ξpu, Uu

q, and
ż

I
E

”

|ξu
|
2
ı

du ă `8. (13)
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Controlled system X

Existence and uniqueness for X
Under some standard assumptions on model coefficients b, σ, for an admissible initial
condition ξ and an admissible control α P A, there exists a unique solution to (11) such
that there exists a Borel measurable function x defined on I ˆ Rd

ˆ Cn
r0,T s ˆ p0, 1q into Rd

with :

X u
t “ xpu, t, W u

.^t , Uu
q, P a.s, @pt, uq P r0, T s ˆ I and

ż

I
E

”

sup
0ďtďT

|X u
t |

2
ı

du ă `8.

Ñ This theorem implies the measurability of the mapping u ÞÑ LpX u, W u, Uu
q which

implies under additional standard assumptions f and g that the cost functional (4) is well
defined and finite.
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Probabilistic set-up for non exchangeable mean field SDEs
Adjoint Equations to X

We define the 2 following spaces :

L2
pI; Sd

q “ tY “ pY u
quPI : Y u is Fu-adapted and

ż

I
E

”

sup
0ďtďT

|Y u
t |

2
ı

du ă `8u

L2
pI; H2,dˆn

q “ tZ “ pZ u
quPI : Z u is Fu-adapted and

ż

I
E

”

ż T

0
|Z u

t |
2dt

ı

du ă `8u

Adjoint Equations to X
We call adjoint processes of X any pair pY, Zq “ pY u

t , Zu
t quPI,tPr0,T s of processes in L2pI; Sd q ˆ L2pI; H2,dˆnq satisfying the

following conditions
(i) pY, Zq is solution to the adjoint equations

$

’

’

’

’

&

’

’

’

’

%

dY u
t “ ´Bx Hpu, Xu

t , pPXv
t

qvPI , Y u
t , Zu

t , αu
t qdt ` Zu

t dW u
t

´
ş

I Ẽ

„

B δ
δm Hpũ, X̃ ũ

t , pPXv
t

qvPI , Ỹ ũ
t , Z̃ ũ

t , α̃ũ
t qpu, Xu

t q

ȷ

dũdt , t P r0, T s ,

Y u
T “ Bx gpu, Xu

T , PXv
T

qvPI q `
ş

I Ẽ

„

B δ
δm gpũ, X̃ ũ

T , pPXv
T

qvPI qpu, Xu
T q

ȷ

dũ ,

(14)

for every u P I where pX̃ , Ỹ , Z̃ , α̃q is an independent copy of pX , Y , Z , αq defined on pΩ̃, F̃, P̃q

(ii) There exist Borel functions y and z defined on I ˆ r0, T s ˆ Cd
r0,T s

ˆ p0, 1q such that

Y u
t “ ypu, t, W u

.^t , Uu
q, and Zu

t “ zpu, t, W u
.^t , Uu

q, for t P r0, T s, P-a.s. and u P I.
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Derivation of a Pontryagin Optimality Condition
A necessary condition

We now state the main results which are obtained under some standard regularity
assumptions on b, σ, f and g .

Gâteaux derivative of J
For β P A such that α ` ϵβ P A for ϵ ą 0 small enough, we have :

lim
ϵÑ0

1
ϵ

`

Jpα ` ϵβq ´ Jpαq
˘

“

ż

I
E

”

ż T

0

´

BαHpu, X u
t , pPXv

t
qvPI , Y u

t , Z u
t , αu

t q ¨ βu
t

¯

dt
ı

du

where X is given by (11), pY, Zq are given by (14) and the Hamiltonian function H is
given by (10).

Necessary condition for optimality of α

Moreover, if we assume that H is convex in a P A, that α “ pαu
t quPI,0ďtďT is optimal,

that X “ pX u
t quPI,0ďtďT is the associated optimal control state given by (11) and that

pY, Zq “ pY u
t , Z u

t quPI,0ďtďT are the associated adjoint processes solving (14), then we
have for almost every u P I :

@a P A, Hpu, X u
t , pPXv

t
qvPI , Y u

t , Z u
t , αu

t q ď Hpu, X u
t , pPXv

t
qvPI , Y u

t , Z u
t , aq dt b dP a.e

(15)
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Derivation of a Pontryagin Optimality Condition
A sufficient condition

Sufficient condition for optimality of α

Let α “ pαuquPI P A, X the corresponding controlled state process and pY, Zq the corresponding
adjoint processes. Let also assume that for almost every u P I :

p1q Rd ˆ L2pP2pRd q Q px , µq Ñ gpu, x , µq is convex

p2q Rd ˆ L2pP2pRd q ˆ A Q px , µ, aq Ñ Hpu, x , µ, Y u
t , Zu

t , aq is convex dt b dP a.e

If we assume also following the necessary condition for optimality that for almost every u P I :

Hpu, Xu
t , pPXv

t
qvPI , Y u

t , Zu
t , αu

t q “ inf
βPA

Hpu, Xu
t , pPXv

t
qvPI , Y u

t , Zu
t , βq, dt b dP a.e

Then, α is an optimal control in the sense that Jpαq “ inf
α1PA

Jpα1q

‚ Recall that the convexity property is understood under the definition (8).
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Solvability a collection of FBSDE
Definition of a solution

The Pontryagin Maximum principle leads us to study the following collection of fully
coupled FBSDE :

Collection of FBSDE system
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

dXu
t “ bpu, t, Xu

t , pPXv
t

qvPI , α̂
u
t qdt ` σpu, t, Xu

t , pPXv
t

qvPI , α̂
u
t qdW u

t ,

Xu
0 “ ξ

u
,

dY u
t “ ´Bx Hpu, t, Xu

t , pPXv
t

qvPI , Y u
t , Zu

t , α̂
u
t qdt ` Zu

t dW u
t

´

ż

I
Ẽ

„

B
δ

δm
Hpũ, t, X̃ ũ

t , pPXv
t

qvPI , Ỹ ũ
t , Z̃ ũ

t , ˜̂αũ
t qpu, Xu

t q

ȷ

dũdt,

Y u
T “ Bx gpu, Xu

T , pPXv
T

qvPI q `

ż

I
Ẽ

„

B
δ

δm
gpũ, X̃ ũ

T , pPXv
T

qvPI qpu, Xu
T q

ȷ

dũ,

α̂
u
t “ âpu, t, Xu

t , pPXv
t

qvPI , Y u
t , Zu

t q,

(16)

for every u P I, t P r0, T s. pX̃ , Ỹ , Z̃ , ˜̂αq is an independant copy of pX , Y , Z , αq defined on pΩ̃, F̃, P̃q and Ẽ denotes the
expectation on the probability space pΩ̃, F̃, P̃q

Ñ Note that (20) is indeed a fully coupled FBSDE through the definition of α̂u
t .

Ñ We are looking for a solution to (20) in a sense to be defined.
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Solvability of a collection of BSDEs
Definition of a solution

We before introduction a suitable space of solution for (20) which we shall denote by S.

Definition of a suitable space of solution S to the collection of FBSDE (20)
We say that pX , Y , Zq “ pXu , Y u , ZuquPI belongs to S if :

‚ There exists measurable functions x , y and z defined on I ˆ r0, T s ˆ Cd
r0,T s

ˆ r0, 1s Ñ Rd such that

Xu
t “ xpu, t, W u

.^t , Zu
q, Y u

t “ ypu, t, W u
.^t , Zu

q, and Zu
t “ zpu, t, W u

.^t , Zu
q.

‚ Each process Xu and Y u are Fu -adapted and continuous and Zu is Fu -adapted and square integrable.
‚ The following norm is finite :

∥pX , Y , Zq∥S “

¨

˝

ż

I
E

„

sup
tPr0,T s

|Xu
t |

2
` sup

tPr0,T s

|Y u
t |

2
`

ż T

0
|Zu

t |
2dt

fi

fl du
˙ 1

2

We say that pXu , Y u , Zuqu P S is a unique solution to (20) if the equations in (20) are satisfied for almost every u. Moreover,
we say that the solution is unique if, whenever pXu , Y u , Zuqu , pX̃u , Ỹ u , Z̃uqu , the processes pXu , Y u , Zuq and pX̃u , Ỹ u , Z̃uq

coïncide, up to a P-null set, for almost every u P I.

Ñ Note that (17) guarantees the measurability of the mapping

I Q u ÞÑ LpX u, Y u, Z u
q P P2pCd

r0,T s ˆ Cd
r0,T s ˆ H2,dˆn

r0,T s
q

which justifies the well defined norm ∥.∥S .
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Solvability of a collection of FBSDEs
Assumptions : Existence and Uniqueness

We now give the Assumptions which will ensure existence and uniqueness to the
collection of FBSDE (20).

Assumption : Existence and Uniqueness (1)
There exists two constants L ě 0 and λ ą 0 such that :

(i) The drift b and the volatility σ are linear in µ, x and α such that :

bpu, x, µ, αq “ b0puq `

ż

I
b2pu, vqµ̄

v dv ` b3puqx ` b4puqα

σpu, x, µ, αq “ σ0puq `

ż

I
σ2pu, vqµ̄

v dv ` σ3puqx ` σ4puqα

for some bounded measurable deterministics functions b0, b1, b2, b3, b4 with values in Rd , Rdˆd , Rdˆd , Rdˆm and σ0, σ1, σ2, σ3
with values in Rdˆn, Rpdˆnqˆd , Rpdˆnqˆd and Rpdˆnqˆm and where the notation µ̄v “

ş

Rd xµv pdxq.

(ii) The functions f and g satisfy the same assumptions as previously. Moreover, the derivatives of f and g with respect to px, aq and x respectively
are assumed to be L-Lipschitz with respect to px, a, µq and px, µq respectively where the Lipschitz property in the variable µ is understood in
the sense of the distance (5).

(iii) For any u P I, any x, x1 P Rd , any a, a1 P A any µ “ pµu quPI , µ1 “ pµ
1u quPI P L2pP2pRd qq, and any Rd random variables Xu and

X
1,u such that Xu „ µu and X

1,u „ µ1u , we have :

ż

I
E

”

|B
δ

δm
f pu, x1

, µ
1
, a1

qpũ, X1ũ
q ´ B

δ

δm
f pu, x, µ, aqpũ, Xũ

q|
2ı

dũ

ď L
ˆ

|x1
´ x|

2
` |a1

´ a|
2

`

ż

I
E

“

|X1u
´ Xu

|
2‰

du
˙
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Solvability of a collection of FBSDEs
Assumptions : Existence and Uniqueness

Assumption : Existence and Uniqueness (2)
Similarly for g , we have :

ż

I
E

”

|B
δ

δm
gpu, x1

, µ
1
qpũ, X1ũ

q ´ B
δ

δm
gpu, x, µqpũ, Xũ

q|
2ı

dũ

ď L
ˆ

|x1
´ x|

2
`

ż

I
E

“

|X1u
´ Xu

|
2‰

du
˙

(iv) The function f satisfies the following convexity property :

f pu, x1
, µ

1
, a1

q ´ f pu, x, µ, aq ´ Bx f pu, x, µ, aq.px1
´ xq ´ Bα f pu, x, µ, aq.pa1

´ aq

´

ż

I
E

“

B
δ

δm
f pu, x, µ, aqpũ, Xũ

q.pX1ũ
´ Xũ

q
‰

dũ ě λ|a1
´ a|

2

for all u P I, px, µ, aq P Rd ˆ L2pP2pRd qq ˆ A and px1, µ1, a1q P Rd ˆ L2pP2pRd qq ˆ A, when Xũ „ µũ and Xũ „ µũ and
X1ũ „ µ1ũ . We also assume that g is convex in px, µq as we did in the sufficient condition in the Pontryagin optimality principle :

gpu, x1
, µ

1
q ´ gpu, x, µq ´ Bx gpu, x, µq.px1

´ xq ´

ż

I
E

“

B
δ

δm
gpu, x, µqpũ, Xũ

q.pX1ũ
´ Xũ

q
‰

dũ ě 0
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Solvability of a collection of FBSDEs
Existence and unicity

Theorem : Existence and Uniqueness for a solution to (20)

Under Assumptions 23 and 24 and for any admissible initial condition ξ “ pξu
quPI , the

collection of forward backward system pX, Y, Zq (20) is uniquely solvable in S.
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Linear Quadratic (LQ) graphon models
Model introduction

LQ Graphon Models
We consider the following class of models (assuming for sake of simplicity σ constant and
A Ă Rm).

dX u
t “

„

βu
` AuX u

t `

ż

I
GApu, vqErX v

t sdv ` Buαu
t

ȷ

dt ` γudW u
t , t P r0, T s

X u
0 “ ξu, u P I, (17)

where ξ “ pξu
qu an admissible initial condition and β P L8

pI; Rd
q, γ P L8

pI; Rd
q,

A P L8
pI, Rdˆd

q, B P L8
pI; Rdˆm

q, GA P L8
pI ˆ I; Rdˆd

q.

LQ cost functional definition

Jpαq “

ż

I
E

”

ż T

0
Qu`

Xu
t ´

ż

I
G̃Qpu, vqErX v

t sdv
˘

¨
`

Xu
t ´

ż

I
G̃Qpu, vqErX v

t sdv
˘

` α
u
t ¨ Ru

α
u
t

` 2α
u
t ¨ ΓuXu

t ` 2α
u
t ¨

ż

I
GI pu, vqErX v

t sdvdt

` Hu`

Xu
T ´

ż

I
G̃H pu, vqErX v

T sdv
˘

¨
`

Xu
T ´

ż

I
G̃H pu, vqErX v

T sdv
˘

ı

du (18)
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Linear-Quadratic (LQ) Graphon Models
Model introduction

In the LQ ´ NEMFC , we have the following representation for H and α̂.

Hamiltonian H and optimal control α form in the LQ case

Hpu, x , µ, y , z, aq “

´

βu
` Aux `

ż

I
GApu, vqµ̄v dv ` Bua

¯

¨ y ` γu : z

` Qu`

x ´

ż

I
G̃Qpu, vqµ̄v dv

˘

¨
`

x ´

ż

I
G̃Qpu, vqµ̄v dv

˘

` a ¨ Rua ` 2a ¨ Γux ` 2a ¨

ż

I
GIpu, vqµ̄v dv

such that the unique minimizor is given by :

α̂pu, x , µ, y , zq “ ´
1
2 pRu

q
´1

”

pBu
q

Jy ` 2Γux ` 2
ż

I
GIpu, vqµ̄v dv

ı
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Linear-Quadratic Graphon Mean Field Control
Solution to LQ Graphon MFC

Ansatz form for Y
We are looking for an ansatz Y u

t in the following form :

Y u
t “ 2

`

K u
ptqX u

t `

ż

I
K̄tpu, vqErX v

t sdv
˘

` Λu
t
˘

, (19)

where K P C1`

r0, T s; L8
pI; Sd

`q
˘

, K̄ P C1`

r0, T s, L2
pI ˆ I; Rdˆd

q
˘

and
Λ P C1`

r0, T s; L2
pI; Rd

q
˘

are to be determined through infinite dimensional Ricatti
equations.

Ñ We inject the form (19) in (20) and we end up with a triangular Ricatti system for K ,
K̄ and Λ for which we can prove existence and uniqueness.
Ñ Finally, we can show existence and uniqueness of the following collection of SDE :

$

’

’

’

’

’

&

’

’

’

’

’

%

dX u
t “

ˆ

βu
´ Bu

pRu
q

´1
pBu

q
JΛu

t `

´

Au
´ Bu

pRu
q

´1`

pBu
q

JK u
t ` Γu˘

¯

X u
t

`

ż

I

´

GApu, vq ´ Bu
pRu

q
´1`

pBu
q

JK̄tpu, vq ` GIpu, vq
˘

¯

ErX v
t sdv

˙

dt ` γudW u
t ,

X u
0 “ ξu,
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Linear Quadratic Graphon MFC

Optimal control α in the L-Q case

αu
t “ Su

ptqX u
t `

ż

I
S̄uv

ptqErX v
t sdv ` Γu

ptq, (20)

where S “ pSu
qu, S̄ “ pS̄uv

qu,v and Γ “ pΓu
qu are deterministic functions, expressed in

terms of K ,K̄ and Λ given by :
$

’

’

’

&

’

’

’

%

Su
ptq “ ´pRu

q
´1

´

pBu
q

JK u
t ` Γu

¯

,

S̄uv
ptq “ ´pRu

q
´1

´

pBu
q

JK̄tpu, vq ` GIpu, vq

¯

Γu
ptq “ ´pRu

q
´1

pBu
q

JΛu
t
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Linear Quadratic Graphon Mean Field Control
An example : systemic risk model with heterogeneous banks

We consider the following model :

dX u
t “ rκpX u

t ´

ż

I
G̃κpu, vqErX v

t sdvq ` αu
t sdt ` σudW u

t ,

X u
0 “ ξu, (21)

with G̃κ a bounded, symmetric measurable function from I ˆ I into R., σu
ą 0 and

α “ pαu
q the control process. The initial condition ξ “ pξu

qu is assumed to be admissible.
The aim of the central bank is then to minimize over α the following cost functional :

Cost functional Jpαq

Jpαq “

ż

I
E

”

ż T

0

”

η
u`

Xu
t ´

ż

I
G̃ηpu, vqErX v

t sdv
˘2

` qu
α

u
t pXu

t ´

ż

I
Gqpu, vqErX v

t sdvq ` |α
u
t |

2
ı

dt

` ru
pXu

T ´

ż

I
G̃r pu, vqErX v

T sdvq
2
ı

du (22)
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Linear Quadratic Graphon Mean Field Control
An example : systemic risk model with heterogeneous banks

Optimal control form in systemic risk model
Following (20), we end up with the following optimal control form :

α̂u
t “ ´pK u

t `
qu

2 qpX u
t ´

ż

I
GQpu, vqErX v

t sdvq ´

ż

I

´

K̄tpu, vq ` K u
t GQpu, vq

¯

ErX v
t sdv

(23)

‚ Setting the coefficients independant of u P I and G̃κ ” G̃η ” G̃r ” GQ , we recover the
classical mean-field result see for systemic risk (see [5]) with K̄t ” ´Kt and the optimal
control is given by :

α̂t “ ´pKt `
q
2 qpXt ´ ErXtsq

Ñ We therefore have the additional term
ş

I

`

K̄tpu, vq ` K u
t GQpu, vq

˘

ErX v
t sdv which

cannot be easily analyzed as we can’t solve explicitly K̄ uv
t .
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Conclusion
Main results of our work

Conclusion of our work
‚ We provide a natural extension to the classical MFC problem in the context of non

exchangeable interactions by considering the space L2`

P2pRd
q
˘

.

‚ It leads to the study of a collection indexed by u P I of fully coupled FBSDE for
which we are able to prove existence and uniqueness under standard assumptions on
the model coefficients.

‚ We provide a semi-analytic form of the LQ graphon model as it leads to the study of
rectangular Ricatti equations which cannot be solved explicitly evene in simplified
models.
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Conclusion
Some natural extensions to our work

On the extended NE-MFC problem
We can extend our work to extended MFC of non exchangeable systems where the
dynamics are given by :

dX u
t “ bpu, X u

t , αu
t , pPpXv

t ,αv
t qqvPIqdt ` σpu, X u

t , αu
t , pPpXv

t ,αv
t qqvPIqdW u

t , 0 ď t ď T , u P I,
X u

0 “ ξu.

Ñ Need to extend the tools we introduced in this presentation like done in [4]

Ñ The optimization problem is not as simply characterized by a pointwise minimization
of the Hamiltonian H.

On the heuristic link between pY, Zq and the value function v
Denoting by v the value function associated to the optimization problem (3) and (4) , it
is shown in [1] that v is law invariant and therefore can be defned on L2`

P2pRd
q
˘

and
one can heuristically expect that :

Y u
t “ B

δ

δm v
`

t, pPXv
t

qvPI
˘

pu, X u
t q
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Conclusion
Further works on NE-MFC problem

Future works on NE ´ MFC
‚ Study of the convergence of the N-agent system towards the limit candidate either

by showing convergence of value functions of both problems or convergence of
optimal controls.

‚ Discrete time version of the Maximum principle and the DPP on the NE-MFC
problem.

‚ Study of the NE ´ MFC with common noise.
‚ Numerical algorithms in the context of a finite number of players :

p1q In a model-based setting : Learning optimal controls α “ pα1,N , . . . , αN,N
q

and value function VN through DL algorithms.
p2q In a model-free setting : Learning optimal controls α “ pα1,N , . . . , αN,N

q

and value function VN through RL algorithms.
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