Maximum Principle for Non-Exchangeable Mean Field Control Problems with Application to the LQ case

Samy Mekkaoui

CMAP, École Polytechnique and LPSM

Mean Field Games and Applications, Berlin 2025

Joint work with Idris Kharroubi (LPSM, Sorbonne Université) Huyên Pham (CMAP, École Polytechnique)

23 July 2025

(日) (四) (日) (日) (日)

Contents

Introduction

2 Hamiltonian and adjoint equations for non exchangeable SDE

3 Pontryagin principle for optimality

Solvability of non exchangeable mean field SDEs

6 An application to linear quadratic mean field control

2

< □ > < □ > < □ > < □ > < □ >

Clasical MFC problem

The classical mean-field control (MFC) problem can be summarized as the following optimization problem

$$\inf_{\alpha \in \mathcal{A}} J(\alpha) := \mathbb{E} \Big[\int_0^T f(X_t^{\alpha}, \mathbb{P}_{X_t^{\alpha}}, \alpha_t) \mathrm{d}t + g(X_T, \mathbb{P}_{X_T^{\alpha}}) \Big]$$
(1)

where \mathcal{A} defines a suitable class of control and where the controlled state $X^{\alpha} = (X_t^{\alpha})_{t \in [0, T]}$ dynamics is given by :

$$\begin{split} dX_t^{\alpha} &= b(X_t^{\alpha}, \mathbb{P}_{X_t^{\alpha}}, \alpha_t) \mathrm{d}t + \sigma(X_t^{\alpha}, \mathbb{P}_{X_t^{\alpha}}, \alpha_t) \mathrm{d}W_t, \\ X_0^{\alpha} &= \xi \end{split}$$

where the random variables are defined on an abstract filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ supporting a brownian motion W and an initial random variable ξ .

 \rightarrow 2 well known methods to study the optimization problem (1)-(2) : Dynamic programming and Pontryagin maximum principle.

Humboldt University of Berlin

Maximum Principle for NE-MFC

(2)

→ Extend the known *MFG* theory to non exchangeable interactions. A lot of litterature has been developed recently in the litterature with the Graphons theory (see [6] and [7] for instance) where an agent labeled by $u \in I = [0, 1]$ interacts with the other agents through the probability measure $\frac{\int_{I} G(u,v) \mathbb{P}_{X_{v}}(dx) dv}{\int_{I} G(u,v) dv}$).

イロト イヨト イヨト イヨト

→ Extend the known *MFG* theory to non exchangeable interactions. A lot of litterature has been developed recently in the litterature with the Graphons theory (see [6] and [7] for instance) where an agent labeled by $u \in I = [0, 1]$ interacts with the other agents through the probability measure $\frac{\int_{I} G(u,v) \mathbb{P}_{X'}(dx) dv}{\int_{I} G(u,v) dv}$).

 \rightarrow Our goal is to extend the framework to non exchangeable mean-field systems without specifying the type of interaction and where the dynamics will depend through a term depending on the collection of laws $(\mathbb{P}_{X_t^r})_{v \in I}$ (see De Crescenzo, Fuhrman, Kharroubi and Pham [1] for the first introduction to this framework).

イロン イ団 とく ヨン イヨン

• Central planner aims to control a system of interacting heterogenous agents :

Non Exchangeable Mean Field SDE

$$dX_t^u = b(u, X_t^u, \alpha_t^u, (\mathbb{P}_{X_t^v})_{v \in I}) dt + \sigma(u, X_t^u, \alpha_t^u, (\mathbb{P}_{X_t^v})_{v \in I}) dW_t^u, \quad 0 \le t \le T, u \in I, \quad (3)$$

$$X_0^u = \xi^u.$$

э

イロン イロン イヨン イヨン

• Central planner aims to control a system of interacting heterogenous agents :

Non Exchangeable Mean Field SDE

$$\begin{aligned} dX_t^u &= b(u, X_t^u, \alpha_t^u, (\mathbb{P}_{X_t^v})_{v \in I}) \mathrm{d}t + \sigma(u, X_t^u, \alpha_t^u, (\mathbb{P}_{X_t^v})_{v \in I}) \mathrm{d}W_t^u, \quad 0 \leq t \leq T, u \in I, \quad (3) \\ X_0^u &= \xi^u. \end{aligned}$$

 \rightarrow Minimize over a collection of processes $\alpha = (\alpha^u)_{u \in I}$ in a suitable class \mathcal{A} the following cost functional :

Cost Functional

$$J(\alpha) = \int_{I} \mathbb{E} \Big[\int_{0}^{T} f(u, X_{t}^{u}, \alpha_{t}^{u}, (\mathbb{P}_{X_{t}^{v}})_{v \in I}) \mathrm{d}t + g(u, X_{T}^{u}, (\mathbb{P}_{X_{T}^{v}})_{v \in I}) \Big] \mathrm{d}u$$

$$\tag{4}$$

 \rightarrow Compute $V_0 = J(\alpha^*)$ where α^* is a minimizor of J.

э

イロン イ団 とく ヨン イヨン

Objectives :

• Adapt the Pontryagin Maximum Principle to mean field control for non exchangeable mean field systems (NE-MFC) to find necessary and sufficient conditions for the characterization of an admissible optimal control *α*.

< □ > < □ > < □ > < □ > < □ >

Objectives :

- Adapt the Pontryagin Maximum Principle to mean field control for non exchangeable mean field systems (NE-MFC) to find necessary and sufficient conditions for the characterization of an admissible optimal control α .
- Propose an illustration in the Linear Quadratic (LQ) case with an application to systemic risk for heterogeneous banks.

イロト 不得 トイヨト イヨト

Contents

Introduction

Pamiltonian and adjoint equations for non exchangeable SDE

3 Pontryagin principle for optimality

Olvability of non exchangeable mean field SDEs

5 An application to linear quadratic mean field control

2

< □ > < □ > < □ > < □ > < □ >

Some preliminaries tools Definition of $L^2(\mathcal{P}_2(\mathbb{R}^d))$

Following the NE - MFC setting, we need to introduce a suitable space for the collection of measures which we will denote as $L^2(I; \mathcal{P}_2(\mathbb{R}^d)) := L^2(\mathcal{P}_2(\mathbb{R}^d))$.

Definition of $L^2(\mathcal{P}_2(\mathbb{R}^d))$:

The space $L^2ig(\mathcal{P}_2(\mathbb{R}^d)ig)$ is defined as follows :

$$\{\mu = (\mu^{u})_{u \in I} \text{ s.t } I \ni u \mapsto \mu^{u} \in \mathcal{P}_{2}(\mathbb{R}^{d}) \text{ is measurable and } \int_{I} \int_{\mathbb{R}^{d}} |x|^{2} \mu^{u}(\mathrm{d}x) \mathrm{d}u < +\infty\}.$$

- The measurability is understood in the Borel sense given the topological properties of $\mathcal{P}_2(\mathbb{R}^d).$
- The space $L^2ig(\mathcal{P}_2(\mathbb{R}^d)ig)$ is endowed with the norm :

$$\mathcal{W}_2(\boldsymbol{\mu},\boldsymbol{\nu})^2 = \int_I \mathcal{W}_2(\boldsymbol{\mu}^u,\boldsymbol{\nu}^u)^2 \mathrm{d}\boldsymbol{u}$$
(5)

э

イロト イヨト イヨト イヨト

A notion of derivative in $L^2(\mathcal{P}_2(\mathbb{R}^d))$

A derivative in $L^2(\mathcal{P}_2(\mathbb{R}^d))$ (1)

(i) Given a function $v: L^2(\mathcal{P}_2(\mathbb{R}^d)) \to \mathbb{R}$, we say that a measurable function

$$\frac{\delta}{\delta m} v : L^2(\mathcal{P}_2(\mathbb{R}^d)) \times I \times \mathbb{R}^d \ni (\mu, u, x) \longmapsto \frac{\delta}{\delta m} v(\mu)(u, x) \in \mathbb{R}$$
(6)

is the linear functional derivative (or flat derivative) of v if

- 1. $(\mu, x) \mapsto \frac{\delta}{\delta m} v(\mu)(u, x)$ is continuous from $L^2(\mathcal{P}_2(\mathbb{R}^d)) \times \mathbb{R}^d$ to \mathbb{R} for all $u \in I$;
- 2. for every compact set $\mathcal{K} \subset L^2(\mathcal{P}_2(\mathbb{R}^d))$ there exists a constant $\mathcal{C}_{\mathcal{K}} > 0$ such that

$$\left|\frac{\delta}{\delta m} v(\boldsymbol{\mu})(\boldsymbol{u}, \boldsymbol{x})\right| \leqslant C_{\mathcal{K}} (1+|\boldsymbol{x}|^2),$$

for all $u \in I$, $x \in \mathbb{R}^d$, $\mu \in K$;

3. we have

$$\begin{aligned} \mathbf{v}(\nu) - \mathbf{v}(\mu) &= \int_0^1 \langle \frac{\delta}{\delta m} \mathbf{v}(\mu + \theta(\nu - \mu)), \nu - \mu \rangle \mathrm{d}\theta \\ &= \int_0^1 \int_I \int_{\mathbb{R}^d} \frac{\delta}{\delta m} \mathbf{v}(\mu + \theta(\nu - \mu)(u, x) (\nu^u - \mu^u)(\mathrm{d}x) \mathrm{d}u \mathrm{d}\theta \end{aligned}$$

for all $\mu, \nu \in L^2(\mathcal{P}_2(\mathbb{R}^d))$.

A notion of derivative in $L^2(\mathcal{P}_2(\mathbb{R}^d))$

A derivative in $L^2(\mathcal{P}_2(\mathbb{R}^d))$ (2)

(ii) We say that the function v admits a continuously differentiable flat derivative if

- 1. v admits a flat derivative $\frac{\delta}{\delta m}v$ satisfying $x \mapsto \frac{\delta}{\delta m}v(\mu)(u, x)$ is Fréchet differentiable with Fréchet derivative denoted by $x \mapsto \partial \frac{\delta}{\delta m}v(\mu)(u, x)$ for all $(\mu, u) \in L^2(\mathcal{P}_2(\mathbb{R}^d)) \times I$;
- 2. $(\mu, x) \mapsto \partial \frac{\delta}{\delta m} v(\mu)(u, x)$ is continuous from $L^2(\mathcal{P}_2(\mathbb{R}^d)) \times \mathbb{R}^d$ to \mathbb{R} for all $u \in I$;
- 3. for every compact set $\mathcal{K} \subset L^2(\mathcal{P}_2(\mathbb{R}^d))$ there exists a constant $\mathcal{C}_{\mathcal{K}} > 0$ such that

$$\left|\partial \frac{\delta}{\delta m} v(\boldsymbol{\mu})(\boldsymbol{u}, \boldsymbol{x})\right| \leq C_{\mathcal{K}} (1+|\boldsymbol{x}|^2),$$

for all $u \in I$, $x \in \mathbb{R}^d$, $\mu \in K$.

イロト 不得 トイヨト イヨト

A notion of derivative in $L^2(\mathcal{P}_2(\mathbb{R}^d))$

Gateaux derivative on $L^2(\mathcal{P}_2(\mathbb{R}^d))$

Let $f: I \times \mathbb{R}^d \times L^2(\mathcal{P}_2(\mathbb{R}^d)) \to \mathbb{R}$ assumed to have a continuously differentiable linear functional derivative $\partial \frac{\delta}{\delta m} f$. For $X, Y \in L^2(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{R}^d)^I$ such that $(\mathbb{P}_{X^v})_{v \in I}, (\mathbb{P}_{Y^v})_{v \in I} \in L^2(\mathcal{P}_2(\mathbb{R}^d))$ we have

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(f(u, x, (\mathbb{P}_{X^{v} + \epsilon Y^{v}})_{v \in I}) - f(u, x, (\mathbb{P}_{X^{v}})_{v \in I}) \right) = \int_{I} \mathbb{E} \left[\partial \frac{\delta}{\delta m} f(u, x, (\mathbb{P}_{X^{v}})_{v \in I}) (\tilde{u}, X^{\tilde{u}}) \cdot Y^{\tilde{u}} \right] \mathrm{d}\tilde{u}$$
⁽⁷⁾

э

イロト イヨト イヨト イヨト

A notion of derivative in $L^2(\mathcal{P}_2(\mathbb{R}^d))$

Gateaux derivative on $L^2(\mathcal{P}_2(\mathbb{R}^d))$

Let $f: I \times \mathbb{R}^d \times L^2(\mathcal{P}_2(\mathbb{R}^d)) \to \mathbb{R}$ assumed to have a continuously differentiable linear functional derivative $\partial \frac{\delta}{\delta m} f$. For $X, Y \in L^2(\Omega, \mathcal{F}, \mathbb{P}, \mathbb{R}^d)^I$ such that $(\mathbb{P}_{X^v})_{v \in I}, (\mathbb{P}_{Y^v})_{v \in I} \in L^2(\mathcal{P}_2(\mathbb{R}^d))$ we have

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(f(u, x, (\mathbb{P}_{X^{v} + \epsilon Y^{v}})_{v \in I}) - f(u, x, (\mathbb{P}_{X^{v}})_{v \in I}) \right) = \int_{I} \mathbb{E} \left[\partial \frac{\delta}{\delta m} f(u, x, (\mathbb{P}_{X^{v}})_{v \in I}) (\tilde{u}, X^{\tilde{u}}) \cdot Y^{\tilde{u}} \right] \mathrm{d}\tilde{u}$$
⁽⁷⁾

→ The relation (7) is understood as a calculus of variation on $L^2(\mathcal{P}_2(\mathbb{R}^d))$.

э

イロト イヨト イヨト イヨト

A notion of convexity in $L^2(\mathcal{P}_2(\mathbb{R}^d))$

A notion of convexity in $L^2(\mathcal{P}_2(\mathbb{R}^d))$

Let $f: I \times \mathbb{R}^d \times L^2(\mathcal{P}_2(\mathbb{R}^d)) \to \mathbb{R}$. f is said to be convex if for every $u \in I$, $x, x' \in \mathbb{R}^d$, $\mu, \mu' \in L^2(\mathcal{P}_2(\mathbb{R}^d))$, we have :

$$f(\boldsymbol{u}, \boldsymbol{x}', \boldsymbol{\mu}') - f(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{\mu}) \ge \partial_{\boldsymbol{x}} f(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{\mu}).(\boldsymbol{x}' - \boldsymbol{x}) + \int_{I} \mathbb{E} \Big[\partial \frac{\delta}{\delta \boldsymbol{m}} f(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{\mu}) (\tilde{\boldsymbol{u}}, \boldsymbol{X}^{\tilde{\boldsymbol{u}}}).(\boldsymbol{X}'^{\tilde{\boldsymbol{u}}} - \boldsymbol{X}^{\tilde{\boldsymbol{u}}}) \Big] \mathrm{d}\tilde{\boldsymbol{u}}.$$
(8)

э

イロン イ団 とく ヨン イヨン

A notion of convexity in $L^2(\mathcal{P}_2(\mathbb{R}^d))$

A notion of convexity in $L^2(\mathcal{P}_2(\mathbb{R}^d))$

Let $f: I \times \mathbb{R}^d \times L^2(\mathcal{P}_2(\mathbb{R}^d)) \to \mathbb{R}$. f is said to be convex if for every $u \in I$, $x, x' \in \mathbb{R}^d$, $\mu, \mu' \in L^2(\mathcal{P}_2(\mathbb{R}^d))$, we have :

$$f(\boldsymbol{u},\boldsymbol{x}',\boldsymbol{\mu}') - f(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu}) \ge \partial_{\boldsymbol{x}} f(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu}).(\boldsymbol{x}'-\boldsymbol{x}) + \int_{I} \mathbb{E} \left[\partial \frac{\delta}{\delta m} f(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu})(\tilde{\boldsymbol{u}},\boldsymbol{X}^{\tilde{\boldsymbol{u}}}).(\boldsymbol{X}'^{\tilde{\boldsymbol{u}}} - \boldsymbol{X}^{\tilde{\boldsymbol{u}}}) \right] \mathrm{d}\tilde{\boldsymbol{u}}.$$
(8)

• The above convexity definition can be easily extended to the case of functions defined on $I \times \mathbb{R}^d \times L^2(\mathcal{P}_2(\mathbb{R}^d) \times A \text{ and reads} :$

$$f(\boldsymbol{u},\boldsymbol{x}',\boldsymbol{\mu}',\boldsymbol{a}') - f(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu},\boldsymbol{a}) \ge \partial_{\boldsymbol{x}}f(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu},\boldsymbol{a}) \cdot (\boldsymbol{a}'-\boldsymbol{a}) + \partial_{\boldsymbol{\alpha}}f(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu},\boldsymbol{a}) \cdot (\boldsymbol{a}'-\boldsymbol{a}) + \int_{I} \mathbb{E}\Big[\partial \frac{\delta}{\delta m}f(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu},\boldsymbol{a})(\tilde{\boldsymbol{u}},\boldsymbol{X}^{\tilde{\boldsymbol{u}}}).(\boldsymbol{X}'^{\tilde{\boldsymbol{u}}}-\boldsymbol{X}^{\tilde{\boldsymbol{u}}})\Big] \mathrm{d}\tilde{\boldsymbol{u}}.$$
 (9)

э

12/36

イロト イヨト イヨト イヨト

Definition of the Hamiltonian H:

The Hamiltonian \mathbb{R} -valued function H of the stochastic optimization problem is defined as :

$$H(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu},\boldsymbol{y},\boldsymbol{z},\boldsymbol{a}) = b(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu},\boldsymbol{a}) \cdot \boldsymbol{y} + \sigma(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu},\boldsymbol{a}) : \boldsymbol{z} + f(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu},\boldsymbol{a})$$
(10)

where $(\mathbf{u}, x, \boldsymbol{\mu}, y, z, \mathbf{a}) \in I \times \mathbb{R}^d \times L^2(\mathcal{P}_2(\mathbb{R}^d)) \times \mathbb{R}^d \times \mathbb{R}^{d \times n} \times A$.

 \rightarrow Compute an optimality criterion involving the Hamiltonian *H* assuming differentiability and convexity as defined previously.

э

13/36

イロト 不得 トイヨト イヨト

Definition of the controlled system X

We assume to be working on a class of mean-field control for non exchangeable systems by considering a collection of controlled state proces $\mathbf{X} = (X^u)_{u \in I}$ described by :

Controlled system X dynamics

$$\begin{cases} dX_t^u = b(u, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, \alpha_t^u) \mathrm{d}t + \sigma(u, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, \alpha_t^u) \mathrm{d}W_t^u & 0 \leq t \leq T, \\ X_0^u = \xi^u, u \in I. \end{cases}$$

$$(11)$$

where the admissible control processes $\alpha = (\alpha^u)_{u \in I}$ are defined as follows. For an arbitrary Borel measurable function function $\alpha : I \times [0, T] \times \mathcal{C}^n_{[0,T]} \times (0,1) \to A$, we define :

$$\alpha_t^u = \alpha(u, t, W_{\cdot, t}^u, U^u), \text{ and } \int_I \int_0^T \mathbb{E}[|\alpha_t^u|^2] \mathrm{d}t \mathrm{d}u < +\infty.$$
(12)

Such α is said to be admissible and belongs to \mathcal{A} . Moreover, the initial condition $\boldsymbol{\xi} = (\xi^u)_{u \in I}$ is an admissible initial condition if there exists a Borel mesurable function $\xi : I \times (0, 1) \to \mathbb{R}^d$ s.t

$$\xi^{u} = \xi(u, U^{u}), \text{ and } \int_{I} \mathbb{E}\Big[|\xi^{u}|^{2}\Big] \mathrm{d}u < +\infty.$$
(13)

Existence and uniqueness for \mathbf{X}

Under some standard assumptions on model coefficients b, σ , for an admissible initial condition $\boldsymbol{\xi}$ and an admissible control $\alpha \in \mathcal{A}$, there exists a unique solution to (11) such that there exists a Borel measurable function x defined on $I \times \mathbb{R}^d \times \mathcal{C}^n_{[0,T]} \times (0,1)$ into \mathbb{R}^d with :

$$X^u_t = x(u, t, W^u_{\cdot, \wedge t}, U^u), \quad \mathbb{P} \text{ a.s.} \quad \forall (t, u) \in [0, T] \times I \text{ and } \int_I \mathbb{E} \Big[\sup_{0 \leq t \leq T} |X^u_t|^2 \Big] \mathrm{d}u < +\infty.$$

15/36

A D N A B N A B N A B N

Existence and uniqueness for X

Under some standard assumptions on model coefficients b, σ , for an admissible initial condition $\boldsymbol{\xi}$ and an admissible control $\alpha \in \mathcal{A}$, there exists a unique solution to (11) such that there exists a Borel measurable function x defined on $I \times \mathbb{R}^d \times \mathcal{C}^n_{[0,T]} \times (0,1)$ into \mathbb{R}^d with :

$$X^u_t = x(\underline{u}, t, W^u_{. \land t}, U^u), \quad \mathbb{P} \text{ a.s. } \forall (t, u) \in [0, T] \times I \text{ and } \int_I \mathbb{E} \Big[\sup_{0 \leqslant t \leqslant T} |X^u_t|^2 \Big] \mathrm{d}u < +\infty.$$

 \rightarrow This theorem implies the measurability of the mapping $u \mapsto \mathcal{L}(X^u, W^u, U^u)$ which implies under additional standard assumptions f and g that the cost functional (4) is well defined and finite.

イロト イボト イヨト イヨト

Probabilistic set-up for non exchangeable mean field SDEs $_{\mbox{Adjoint Equations to } \textbf{X}}$

We define the 2 following spaces :

$$L^{2}(I; \mathcal{S}^{d}) = \{ \mathbf{Y} = (Y^{u})_{u \in I} : Y^{u} \text{ is } \mathbb{F}^{u} \text{-adapted and } \int_{I} \mathbb{E} \Big[\sup_{0 \leq t \leq T} |Y^{u}_{t}|^{2} \Big] \mathrm{d}u < +\infty \}$$
$$L^{2}(I; \mathbb{H}^{2, d \times n}) = \{ \mathbf{Z} = (Z^{u})_{u \in I} : Z^{u} \text{ is } \mathbb{F}^{u} \text{-adapted and } \int_{I} \mathbb{E} \Big[\int_{0}^{T} |Z^{u}_{t}|^{2} \mathrm{d}t \Big] \mathrm{d}u < +\infty \}$$

Adjoint Equations to X

We call adjoint processes of **X** any pair $(\mathbf{Y}, \mathbf{Z}) = (Y_t^u, Z_t^u)_{u \in I, t \in [0, T]}$ of processes in $L^2(I; \mathcal{S}^d) \times L^2(I; \mathbb{H}^{2, d \times n})$ satisfying the following conditions

(i) (\mathbf{Y}, \mathbf{Z}) is solution to the adjoint equations

$$\begin{cases} d\mathbf{Y}_{t}^{u} = -\partial_{x}H(u, \mathbf{X}_{t}^{u}, (\mathbb{P}_{\mathbf{X}_{t}^{v}})_{\mathbf{v}\in I}, \mathbf{Y}_{t}^{u}, \mathbf{Z}_{t}^{u}, \alpha_{t}^{u})\mathrm{d}t + \mathbf{Z}_{t}^{u}\mathrm{d}W_{t}^{u} \\ -\int_{I}\mathbb{E}\left[\partial\frac{\delta}{\delta m}H(\tilde{u}, \tilde{\mathbf{X}}_{t}^{\tilde{u}}, (\mathbb{P}_{\mathbf{X}_{t}^{v}})_{\mathbf{v}\in I}, \tilde{\mathbf{Y}}_{t}^{\tilde{u}}, \tilde{\mathbf{Z}}_{t}^{\tilde{u}}, \tilde{\alpha}_{t}^{\tilde{u}})(u, \mathbf{X}_{t}^{u})\right]\mathrm{d}\tilde{u}\mathrm{d}t , \quad t \in [0, T] , \\ \mathbf{Y}_{T}^{u} = \partial_{x}g(u, \mathbf{X}_{T}^{u}, \mathbb{P}_{\mathbf{X}_{T}^{v}})_{\mathbf{v}\in I}) + \int_{I}\mathbb{E}\left[\partial\frac{\delta}{\delta m}g(\tilde{u}, \tilde{\mathbf{X}}_{t}^{\tilde{u}}, (\mathbb{P}_{\mathbf{X}_{T}^{v}})_{\mathbf{v}\in I})(u, \mathbf{X}_{T}^{u})\right]\mathrm{d}\tilde{u} , \end{cases}$$
(14)

for every $u \in I$ where $(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{\alpha})$ is an independent copy of (X, Y, Z, α) defined on $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ (ii) There exist Borel functions y and z defined on $I \times [0, T] \times C^d_{[0, T]} \times (0, 1)$ such that

$$Y^u_t = y(u, t, W^u_{\cdot \wedge t}, U^u), \quad \text{and} \quad Z^u_t = z(u, t, W^u_{\cdot \wedge t}, U^u), \quad \text{for } t \in [0, T], \mathbb{P}\text{-a.s. and } u \in I.$$

Humboldt University of Berlin

Contents

Introduction

Description and adjoint equations for non exchangeable SDE

Ontryagin principle for optimality

4 Solvability of non exchangeable mean field SDEs

5 An application to linear quadratic mean field control

э

< □ > < □ > < □ > < □ > < □ >

Derivation of a Pontryagin Optimality Condition

A necessary condition

We now state the main results which are obtained under some standard regularity assumptions on *b*, σ , *f* and *g*.

Gâteaux derivative of J

For $\beta \in \mathcal{A}$ such that $\alpha + \epsilon \beta \in \mathcal{A}$ for $\epsilon > 0$ small enough, we have :

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(J(\alpha + \epsilon \beta) - J(\alpha) \right) = \int_{I} \mathbb{E} \left[\int_{0}^{T} \left(\partial_{\alpha} H(\boldsymbol{u}, \boldsymbol{X}_{t}^{\boldsymbol{u}}, (\mathbb{P}_{\boldsymbol{X}_{t}^{\boldsymbol{v}}})_{\boldsymbol{v} \in I}, \boldsymbol{Y}_{t}^{\boldsymbol{u}}, \boldsymbol{Z}_{t}^{\boldsymbol{u}}, \alpha_{t}^{\boldsymbol{u}}) \cdot \beta_{t}^{\boldsymbol{u}} \right] \mathrm{d}\boldsymbol{u}$$

where **X** is given by (11), (**Y**, **Z**) are given by (14) and the Hamiltonian function H is given by (10).

18/36

A D N A B N A B N A B N

Derivation of a Pontryagin Optimality Condition

A necessary condition

We now state the main results which are obtained under some standard regularity assumptions on *b*, σ , *f* and *g*.

Gâteaux derivative of J

For $\beta \in \mathcal{A}$ such that $\alpha + \epsilon \beta \in \mathcal{A}$ for $\epsilon > 0$ small enough, we have :

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(J(\alpha + \epsilon \beta) - J(\alpha) \right) = \int_{I} \mathbb{E} \left[\int_{0}^{T} \left(\partial_{\alpha} H(\boldsymbol{u}, \boldsymbol{X}_{t}^{\boldsymbol{u}}, (\mathbb{P}_{\boldsymbol{X}_{t}^{\boldsymbol{v}}})_{\boldsymbol{v} \in I}, \boldsymbol{Y}_{t}^{\boldsymbol{u}}, \boldsymbol{Z}_{t}^{\boldsymbol{u}}, \alpha_{t}^{\boldsymbol{u}}) \cdot \beta_{t}^{\boldsymbol{u}} \right] \mathrm{d}\boldsymbol{u}$$

where **X** is given by (11), (**Y**, **Z**) are given by (14) and the Hamiltonian function H is given by (10).

Necessary condition for optimality of lpha

Moreover, if we assume that H is convex in $a \in A$, that $\alpha = (\alpha_t^u)_{u \in I, 0 \leq t \leq T}$ is optimal, that $\mathbf{X} = (X_t^u)_{u \in I, 0 \leq t \leq T}$ is the associated optimal control state given by (11) and that $(\mathbf{Y}, \mathbf{Z}) = (Y_t^u, Z_t^u)_{u \in I, 0 \leq t \leq T}$ are the associated adjoint processes solving (14), then we have for almost every $u \in I$:

$$\forall a \in A, \quad H(u, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, Y_t^u, Z_t^u, \alpha_t^u) \leq H(u, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, Y_t^u, Z_t^u, a) \quad dt \otimes d\mathbb{P} \text{ a.e}$$

$$\tag{15}$$

A sufficient condition

Sufficient condition for optimality of lpha

Let $\alpha = (\alpha^u)_{u \in I} \in \mathcal{A}$, **X** the corresponding controlled state process and (\mathbf{Y}, \mathbf{Z}) the corresponding adjoint processes. Let also assume that for almost every $u \in I$:

(1)
$$\mathbb{R}^d \times L^2(\mathcal{P}_2(\mathbb{R}^d) \ni (x, \mu) \to g(u, x, \mu) \text{ is convex}$$

(2)
$$\mathbb{R}^d \times L^2(\mathcal{P}_2(\mathbb{R}^d) \times A \ni (x, \mu, a) \to H(u, x, \mu, Y_t^u, Z_t^u, a)$$
 is convex $dt \otimes d\mathbb{P}$ a.e.

If we assume also following the necessary condition for optimality that for almost every $u \in I$:

$$H(u, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, Y_t^u, Z_t^u, \alpha_t^u) = \inf_{\beta \in A} H(u, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, Y_t^u, Z_t^u, \beta), \quad dt \otimes d\mathbb{P} \text{ a.e.}$$

Then, α is an optimal control in the sense that $J(\alpha) = \inf_{\alpha' \in A} J(\alpha')$

• Recall that the convexity property is understood under the definition (8).

A D N A B N A B N A B N

Contents

Introduction

Description and adjoint equations for non exchangeable SDE

3 Pontryagin principle for optimality

Solvability of non exchangeable mean field SDEs

5 An application to linear quadratic mean field control

э

< □ > < □ > < □ > < □ > < □ >

Solvability a collection of FBSDE

Definition of a solution

The Pontryagin Maximum principle leads us to study the following collection of fully coupled FBSDE :

Collection of FBSDE system

$$\begin{cases} dX_t^u = b(u, t, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, \hat{\alpha}_t^u) dt + \sigma(u, t, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, \hat{\alpha}_t^u) dW_t^u, \\ X_0^u = \xi^u, \\ dY_t^u = -\partial_x H(u, t, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, Y_t^u, Z_t^u, \hat{\alpha}_t^u) dt + Z_t^u dW_t^u \\ - \int_I \tilde{\mathbb{E}} \left[\partial \frac{\delta}{\delta m} H(\tilde{u}, t, \tilde{X}_t^{\tilde{u}}, (\mathbb{P}_{X_t^v})_{v \in I}, \tilde{Y}_t^{\tilde{u}}, \tilde{Z}_t^{\tilde{u}}, \tilde{\alpha}_t^{\tilde{u}})(u, X_t^u) \right] d\tilde{u} dt, \end{cases}$$

$$\begin{cases} \mathbf{Y}_t^u = \partial_x g(u, X_T^u, (\mathbb{P}_{X_t^v})_{v \in I}) + \int_I \tilde{\mathbb{E}} \left[\partial \frac{\delta}{\delta m} g(\tilde{u}, \tilde{X}_T^{\tilde{u}}, (\mathbb{P}_{X_T^v})_{v \in I})(u, X_T^u) \right] d\tilde{u}, \\ \hat{\alpha}_t^u = \hat{a}(u, t, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, Y_t^u, Z_t^u), \end{cases} \end{cases}$$

$$\end{cases}$$

$$\end{cases}$$

$$\end{cases}$$

for every $u \in I$, $t \in [0, T]$. $(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{\alpha})$ is an independant copy of (X, Y, Z, α) defined on $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ and $\tilde{\mathbb{E}}$ denotes the expectation on the probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$

イロト イヨト イヨト イヨト

Solvability a collection of FBSDE

Definition of a solution

The Pontryagin Maximum principle leads us to study the following collection of fully coupled FBSDE :

Collection of FBSDE system

$$\begin{cases} dX_t^u = b(u, t, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, \hat{\alpha}_t^u) dt + \sigma(u, t, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, \hat{\alpha}_t^u) dW_t^u, \\ X_0^u = \xi^u, \\ dY_t^u = -\partial_x H(u, t, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, Y_t^u, Z_t^u, \hat{\alpha}_t^u) dt + Z_t^u dW_t^u \\ - \int_I \tilde{\mathbb{E}} \left[\partial \frac{\delta}{\delta m} H(\tilde{u}, t, \tilde{X}_t^{\tilde{u}}, (\mathbb{P}_{X_t^v})_{v \in I}, \tilde{Y}_t^{\tilde{u}}, \tilde{Z}_t^{\tilde{u}}, \tilde{\alpha}_t^{\tilde{u}})(u, X_t^u) \right] d\tilde{u} dt, \end{cases}$$
(16)

$$Y_T^u = \partial_x g(u, X_T^u, (\mathbb{P}_{X_t^v})_{v \in I}) + \int_I \tilde{\mathbb{E}} \left[\partial \frac{\delta}{\delta m} g(\tilde{u}, \tilde{X}_T^{\tilde{u}}, (\mathbb{P}_{X_T^v})_{v \in I})(u, X_T^u) \right] d\tilde{u}, \\ \hat{\alpha}_t^u = \hat{a}(u, t, X_t^u, (\mathbb{P}_{X_t^v})_{v \in I}, Y_t^u, Z_t^u), \end{cases}$$

for every $u \in I$, $t \in [0, T]$. $(\tilde{X}, \tilde{Y}, \tilde{Z}, \tilde{\alpha})$ is an independant copy of (X, Y, Z, α) defined on $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ and $\tilde{\mathbb{E}}$ denotes the expectation on the probability space $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$

 \rightarrow Note that (20) is indeed a fully coupled FBSDE through the definition of $\hat{\alpha}_t^u$.

 \rightarrow We are looking for a solution to (20) in a sense to be defined.

Humboldt University of Berlin

イロト イヨト イヨト イヨト

Solvability of a collection of BSDEs

Definition of a solution

We before introduction a suitable space of solution for (20) which we shall denote by S.

Definition of a suitable space of solution S to the collection of FBSDE (20)

We say that $(X, Y, Z) = (X^u, Y^u, Z^u)_{u \in I}$ belongs to S if :

• There exists measurable functions x, y and z defined on $I \times [0, T] \times C^d_{[0, T]} \times [0, 1] \rightarrow \mathbb{R}^d$ such that

$$X^u_t = x(\boldsymbol{u}, t, W^u_{\cdot \wedge t}, Z^u), \quad Y^u_t = y(\boldsymbol{u}, t, W^u_{\cdot \wedge t}, Z^u), \text{ and } Z^u_t = z(\boldsymbol{u}, t, W^u_{\cdot \wedge t}, Z^u).$$

- Each process X^u and Y^u are F^u-adapted and continuous and Z^u is F^u-adapted and square integrable.
- The following norm is finite :

$$\|(X, Y, Z)\|_{\mathcal{S}} = \left(\int_{I} \mathbb{E}\left[\sup_{t\in[0, T]} |X_{t}^{u}|^{2} + \sup_{t\in[0, T]} |Y_{t}^{u}|^{2} + \int_{0}^{T} |Z_{t}^{u}|^{2} dt\right] du\right)^{\frac{1}{2}}$$

We say that $(X^u, Y^u, Z^u)_u \in S$ is a unique solution to (20) if the equations in (20) are satisfied for almost every u. Moreover, we say that the solution is unique if, whenever $(X^u, Y^u, Z^u)_u$, $(\tilde{X}^u, \tilde{Y}^u, \tilde{Z}^u)_u$, the processes (X^u, Y^u, Z^u) and $(\tilde{X}^u, \tilde{Y}^u, \tilde{Z}^u)$ coı̈ncide, up to a \mathbb{P} -null set, for almost every $u \in I$.

 \rightarrow Note that (17) guarantees the measurability of the mapping

$$I \ni u \mapsto \mathcal{L}(X^{u}, Y^{u}, Z^{u}) \in \mathcal{P}_{2}(\mathcal{C}^{d}_{[0,T]} \times \mathcal{C}^{d}_{[0,T]} \times \mathbb{H}^{2, d \times n}_{[0,T]})$$

which justifies the well defined norm $\|.\|_{\mathcal{S}}$.

イロト 不得 トイヨト イヨト

э

Solvability of a collection of FBSDEs

Assumptions : Existence and Uniqueness

We now give the Assumptions which will ensure existence and uniqueness to the collection of FBSDE (20).

Assumption : Existence and Uniqueness (1)

There exists two constants $L \ge 0$ and $\lambda > 0$ such that :

(i) The drift b and the volatility σ are linear in μ , x and α such that :

$$\begin{split} b(u,x,\mu,\alpha) &= b_0(u) + \int_I b_2(u,v) \bar{\mu}^v \mathrm{d}v + b_3(u)x + b_4(u)\alpha \\ \sigma(u,x,\mu,\alpha) &= \sigma_0(u) + \int_I \sigma_2(u,v) \bar{\mu}^v \mathrm{d}v + \sigma_3(u)x + \sigma_4(u)\alpha \end{split}$$

for some bounded measurable deterministics functions b_0, b_1, b_2, b_3, b_4 with values in $\mathbb{R}^d, \mathbb{R}^{d \times d}, \mathbb{R}^{d \times d}, \mathbb{R}^{d \times d}$ and $\sigma_0, \sigma_1, \sigma_2, \sigma_3$ with values in $\mathbb{R}^{d \times n}, \mathbb{R}^{(d \times n) \times d}, \mathbb{R}^{(d \times n) \times d}$ and $\mathbb{R}^{(d \times n) \times m}$ and where the notation $\bar{\mu}^v = \int_{\mathbb{R}^d} x \mu^v(dx)$.

- (ii) The functions f and g satisfy the same assumptions as previously. Moreover, the derivatives of f and g with respect to (x, a) and x respectively are assumed to be L-Lipschitz with respect to (x, a, μ) and (x, μ) respectively where the Lipschitz property in the variable μ is understood in the sense of the distance (5).
- (iii) For any $u \in I$, any $x, x' \in \mathbb{R}^d$, any $a, a' \in A$ any $\mu = (\mu^u)_{u \in I}, \mu' = (\mu^{'u})_{u \in I} \in L^2(\mathcal{P}_2(\mathbb{R}^d))$, and any \mathbb{R}^d random variables X^u and x', u such that $X^u \sim \mu^u$ and $x', u \sim \mu^{'u}$, we have :

$$\begin{split} \int_{I} \mathbb{E} \Big[|\partial \frac{\delta}{\delta m} f(\boldsymbol{u}, \boldsymbol{x}', \boldsymbol{\mu}', \boldsymbol{a}') (\tilde{\boldsymbol{u}}, \boldsymbol{X}'^{\tilde{\boldsymbol{u}}}) - \partial \frac{\delta}{\delta m} f(\boldsymbol{u}, \boldsymbol{x}, \boldsymbol{\mu}, \boldsymbol{a}) (\tilde{\boldsymbol{u}}, \boldsymbol{X}^{\tilde{\boldsymbol{u}}}) |^{2} \Big] \mathrm{d}\tilde{\boldsymbol{u}} \\ & \leq L \left(|\boldsymbol{x}' - \boldsymbol{x}|^{2} + |\boldsymbol{a}' - \boldsymbol{a}|^{2} + \int_{I} \mathbb{E} [|\boldsymbol{X}'^{\boldsymbol{u}} - \boldsymbol{X}^{\boldsymbol{u}}|^{2}] \mathrm{d}\boldsymbol{u} \right) \end{split}$$

Humboldt University of Berlin

Solvability of a collection of FBSDEs

Assumptions : Existence and Uniqueness

Assumption : Existence and Uniqueness (2)

Similarly for g, we have :

$$\begin{split} \int_{J} \mathbb{E} \Big[|\partial \frac{\delta}{\delta m} g(u, x', \mu')(\bar{u}, X'^{\bar{u}}) - \partial \frac{\delta}{\delta m} g(u, x, \mu)(\bar{u}, X^{\bar{u}})|^2 \Big] \mathrm{d}\bar{u} \\ &\leq L \left(|x' - x|^2 + \int_{J} \mathbb{E} [|X'^u - X^u|^2] \mathrm{d}u \right) \end{split}$$

(iv) The function f satisfies the following convexity property :

$$\begin{split} f(u, x', \mu', \mathfrak{a}') &- f(u, x, \mu, \mathfrak{a}) - \partial_{X} f(u, x, \mu, \mathfrak{a}).(x' - x) - \partial_{\alpha} f(u, x, \mu, \mathfrak{a}).(\mathfrak{a}' - \mathfrak{a}) \\ &- \int_{I} \mathbb{E} \big[\partial \frac{\delta}{\delta m} f(u, x, \mu, \mathfrak{a}) (\tilde{u}, X^{\tilde{U}}).(X'^{\tilde{U}} - X^{\tilde{U}}) \big] \mathrm{d} \tilde{u} \geqslant \lambda |\mathfrak{a}' - \mathfrak{a}|^2 \end{split}$$

for all $u \in I$, $(x, \mu, a) \in \mathbb{R}^d \times L^2(\mathcal{P}_2(\mathbb{R}^d)) \times A$ and $(x', \mu', a') \in \mathbb{R}^d \times L^2(\mathcal{P}_2(\mathbb{R}^d)) \times A$, when $X^{\widetilde{u}} \sim \mu^{\widetilde{u}}$ and $X'^{\widetilde{u}} \sim \mu^{\widetilde{u}}$ and $X'^{\widetilde{u}} \sim \mu^{\widetilde{u}}$. We also assume that g is convex in (x, μ) as we did in the sufficient condition in the Pontryagin optimality principle :

$$g(u, x', \mu') - g(u, x, \mu) - \partial_{x}g(u, x, \mu) \cdot (x' - x) - \int_{J} \mathbb{E}[\partial \frac{\delta}{\delta m}g(u, x, \mu)(\tilde{u}, X^{\tilde{u}}) \cdot (X'^{\tilde{u}} - X^{\tilde{u}})] \mathrm{d}\tilde{u} \ge 0$$

イロン イ団 とく ヨン イヨン

Solvability of a collection of FBSDEs

Existence and unicity

Theorem : Existence and Uniqueness for a solution to (20)

Under Assumptions 23 and 24 and for any admissible initial condition $\xi = (\xi^u)_{u \in I}$, the collection of forward backward system $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ (20) is uniquely solvable in S.

25 / 36

イロト イヨト イヨト イヨト

Contents

Introduction

2 Hamiltonian and adjoint equations for non exchangeable SDE

Ontryagin principle for optimality

4 Solvability of non exchangeable mean field SDEs

5 An application to linear quadratic mean field control

э

< □ > < □ > < □ > < □ > < □ >

Linear Quadratic (LQ) graphon models

Model introduction

LQ Graphon Models

We consider the following class of models (assuming for sake of simplicity σ constant and $A \subset \mathbb{R}^m$).

$$dX_t^u = \left[\beta^u + A^u X_t^u + \int_I G_A(u, v) \mathbb{E}[X_t^v] dv + B^u \alpha_t^u\right] dt + \gamma^u dW_t^u, t \in [0, T]$$
$$X_0^u = \xi^u, u \in I,$$
(17)

where $\boldsymbol{\xi} = (\xi^u)_u$ an admissible initial condition and $\boldsymbol{\beta} \in L^{\infty}(I; \mathbb{R}^d)$, $\boldsymbol{\gamma} \in L^{\infty}(I; \mathbb{R}^d)$, $\boldsymbol{A} \in L^{\infty}(I; \mathbb{R}^{d \times d})$, $\boldsymbol{B} \in L^{\infty}(I; \mathbb{R}^{d \times m})$, $\boldsymbol{G}_A \in L^{\infty}(I \times I; \mathbb{R}^{d \times d})$.

LQ cost functional definition

$$J(\boldsymbol{\alpha}) = \int_{I} \mathbb{E} \Big[\int_{0}^{T} Q^{u} (X_{t}^{u} - \int_{I} \tilde{G}_{Q}(u, v) \mathbb{E} [X_{t}^{v}] dv) \cdot (X_{t}^{u} - \int_{I} \tilde{G}_{Q}(u, v) \mathbb{E} [X_{t}^{v}] dv) + \alpha_{t}^{u} \cdot R^{u} \alpha_{t}^{u} + 2\alpha_{t}^{u} \cdot \Gamma^{u} X_{t}^{u} + 2\alpha_{t}^{u} \cdot \int_{I} G_{I}(u, v) \mathbb{E} [X_{t}^{v}] dv dt + H^{u} (X_{T}^{u} - \int_{I} \tilde{G}_{H}(u, v) \mathbb{E} [X_{T}^{v}] dv) \cdot (X_{T}^{u} - \int_{I} \tilde{G}_{H}(u, v) \mathbb{E} [X_{T}^{v}] dv) \Big] du$$
(18)

Humboldt University of Berlin

Linear-Quadratic (LQ) Graphon Models

Model introduction

In the LQ - NEMFC, we have the following representation for H and $\hat{\alpha}$.

Hamiltonian H and optimal control α form in the LQ case

$$\begin{aligned} H(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu},\boldsymbol{y},\boldsymbol{z},\boldsymbol{a}) &= \left(\beta^{\boldsymbol{u}} + A^{\boldsymbol{u}}\boldsymbol{x} + \int_{I} G_{A}(\boldsymbol{u},\boldsymbol{v}) \bar{\boldsymbol{\mu}}^{\boldsymbol{v}} \mathrm{d}\boldsymbol{v} + B^{\boldsymbol{u}}\boldsymbol{a}\right) \cdot \boldsymbol{y} + \gamma^{\boldsymbol{u}} : \boldsymbol{z} \\ &+ Q^{\boldsymbol{u}} \left(\boldsymbol{x} - \int_{I} \tilde{G}_{Q}(\boldsymbol{u},\boldsymbol{v}) \bar{\boldsymbol{\mu}}^{\boldsymbol{v}} \mathrm{d}\boldsymbol{v}\right) \cdot \left(\boldsymbol{x} - \int_{I} \tilde{G}_{Q}(\boldsymbol{u},\boldsymbol{v}) \bar{\boldsymbol{\mu}}^{\boldsymbol{v}} \mathrm{d}\boldsymbol{v}\right) \\ &+ \boldsymbol{a} \cdot R^{\boldsymbol{u}} \boldsymbol{a} + 2\boldsymbol{a} \cdot \Gamma^{\boldsymbol{u}} \boldsymbol{x} + 2\boldsymbol{a} \cdot \int_{I} G_{I}(\boldsymbol{u},\boldsymbol{v}) \bar{\boldsymbol{\mu}}^{\boldsymbol{v}} \mathrm{d}\boldsymbol{v} \end{aligned}$$

such that the unique minimizor is given by :

$$\hat{\alpha}(\boldsymbol{u},\boldsymbol{x},\boldsymbol{\mu},\boldsymbol{y},\boldsymbol{z}) = -\frac{1}{2}(\boldsymbol{R}^{\boldsymbol{u}})^{-1} \Big[(\boldsymbol{B}^{\boldsymbol{u}})^{\top} \boldsymbol{y} + 2\boldsymbol{\Gamma}^{\boldsymbol{u}}\boldsymbol{x} + 2\int_{\boldsymbol{I}} \boldsymbol{G}_{\boldsymbol{I}}(\boldsymbol{u},\boldsymbol{v}) \boldsymbol{\bar{\mu}}^{\boldsymbol{v}} \mathrm{d}\boldsymbol{v} \Big]$$

28/36

< □ > < □ > < □ > < □ > < □ >

Linear-Quadratic Graphon Mean Field Control

Solution to LQ Graphon MFC

Ansatz form for Y

We are looking for an ansatz Y_t^u in the following form :

$$Y_t^u = 2\left(\frac{K^u(t)X_t^u}{K_t} + \int_I \overline{K}_t(u, v)\mathbb{E}[X_t^v] \mathrm{d}v\right) + \Lambda_t^u\right),\tag{19}$$

where $K \in C^1([0, T]; L^{\infty}(I; \mathbb{S}^d_+))$, $\overline{K} \in C^1([0, T], L^2(I \times I; \mathbb{R}^{d \times d}))$ and $\Lambda \in C^1([0, T]; L^2(I; \mathbb{R}^d))$ are to be determined through infinite dimensional Ricatti equations.

 \rightarrow We inject the form (19) in (20) and we end up with a triangular Ricatti system for K, \bar{K} and Λ for which we can prove existence and uniqueness.

 \rightarrow Finally, we can show existence and uniqueness of the following collection of SDE :

$$\begin{cases} dX_{t}^{u} = \left(\beta^{u} - B^{u}(R^{u})^{-1}(B^{u})^{\top}\Lambda_{t}^{u} + \left(A^{u} - B^{u}(R^{u})^{-1}((B^{u})^{\top}K_{t}^{u} + \Gamma^{u})\right)X_{t}^{u} \\ + \int_{I} \left(G_{A}(u,v) - B^{u}(R^{u})^{-1}((B^{u})^{\top}\bar{K}_{t}(u,v) + G_{I}(u,v))\right)\mathbb{E}[X_{t}^{v}]\mathrm{d}v\right)\mathrm{d}t + \gamma^{u}\mathrm{d}W_{t}^{u}, \\ X_{0}^{u} = \xi^{u}, \end{cases}$$

Optimal control lpha in the L-Q case

$$\alpha_t^{u} = S^{u}(t)X_t^{u} + \int_I \bar{S}^{uv}(t)\mathbb{E}[X_t^{v}]\mathrm{d}v + \Gamma^{u}(t),$$
(20)

where $\boldsymbol{S} = (S^u)_u$, $\boldsymbol{\bar{S}} = (\bar{S}^{uv})_{u,v}$ and $\boldsymbol{\Gamma} = (\Gamma^u)_u$ are deterministic functions, expressed in terms of K, \bar{K} and Λ given by :

$$\begin{cases} S^{u}(t) = -(R^{u})^{-1} \Big((B^{u})^{\top} K_{t}^{u} + \Gamma^{u} \Big), \\ \overline{S}^{uv}(t) = -(R^{u})^{-1} \Big((B^{u})^{\top} \overline{K}_{t}(u, v) + G_{l}(u, v) \Big) \\ \Gamma^{u}(t) = -(R^{u})^{-1} (B^{u})^{\top} \Lambda_{t}^{u} \end{cases}$$

2

30 / 36

イロト イヨト イヨト イヨト

Linear Quadratic Graphon Mean Field Control

An example : systemic risk model with heterogeneous banks

We consider the following model :

$$dX_t^u = [\kappa(X_t^u - \int_I \tilde{\mathcal{G}}_\kappa(u, v) \mathbb{E}[X_t^v] dv) + \alpha_t^u] dt + \sigma^u dW_t^u,$$

$$X_0^u = \xi^u,$$
(21)

with \tilde{G}_{κ} a bounded, symmetric measurable function from $I \times I$ into \mathbb{R} ., $\sigma^u > 0$ and $\alpha = (\alpha^u)$ the control process. The initial condition $\xi = (\xi^u)_u$ is assumed to be admissible. The aim of the central bank is then to minimize over α the following cost functional :

Cost functional $J(\alpha)$

$$J(\boldsymbol{\alpha}) = \int_{I} \mathbb{E} \Big[\int_{0}^{T} \Big[\eta^{u} (X_{t}^{u} - \int_{I} \tilde{G}_{\eta}(u, v) \mathbb{E} [X_{t}^{v}] \mathrm{d}v)^{2} + q^{u} \alpha_{t}^{u} (X_{t}^{u} - \int_{I} G_{q}(u, v) \mathbb{E} [X_{t}^{v}] \mathrm{d}v) + |\alpha_{t}^{u}|^{2} \Big] \mathrm{d}t$$
$$+ r^{u} (X_{T}^{u} - \int_{I} \tilde{G}_{r}(u, v) \mathbb{E} [X_{T}^{v}] \mathrm{d}v)^{2} \Big] du$$
(22)

31/36

A D N A B N A B N A B N

Linear Quadratic Graphon Mean Field Control

An example : systemic risk model with heterogeneous banks

Optimal control form in systemic risk model

Following (20), we end up with the following optimal control form :

$$\hat{\alpha}_t^u = -(\mathcal{K}_t^u + \frac{q^u}{2})(X_t^u - \int_I \mathcal{G}_Q(u, v)\mathbb{E}[X_t^v] \mathrm{d}v) - \int_I \left(\bar{\mathcal{K}}_t(u, v) + \mathcal{K}_t^u \mathcal{G}_Q(u, v)\right)\mathbb{E}[X_t^v] \mathrm{d}v$$
(23)

• Setting the coefficients independant of $u \in I$ and $\tilde{G}_{\kappa} \equiv \tilde{G}_{\eta} \equiv \tilde{G}_{r} \equiv G_{Q}$, we recover the classical mean-field result see for systemic risk (see [5]) with $\bar{K}_{t} \equiv -K_{t}$ and the optimal control is given by :

$$\hat{\alpha}_t = -(K_t + \frac{q}{2})(X_t - \mathbb{E}[X_t])$$

 \rightarrow We therefore have the additional term $\int_{I} \left(\overline{K}_{t}(u, v) + K_{t}^{u} G_{Q}(u, v) \right) \mathbb{E}[X_{t}^{v}] dv$ which cannot be easily analyzed as we can't solve explicitly \overline{K}_{t}^{uv} .

32/36

イロト 不得 トイヨト イヨト

Conclusion of our work

• We provide a natural extension to the classical MFC problem in the context of non exchangeable interactions by considering the space $L^2(\mathcal{P}_2(\mathbb{R}^d))$.

33 / 36

< □ > < □ > < □ > < □ > < □ >

Conclusion of our work

- We provide a natural extension to the classical MFC problem in the context of non exchangeable interactions by considering the space L²(P₂(R^d)).
- It leads to the study of a collection indexed by $u \in I$ of fully coupled FBSDE for which we are able to prove existence and uniqueness under standard assumptions on the model coefficients.

A D N A B N A B N A B N

Conclusion of our work

- We provide a natural extension to the classical MFC problem in the context of non exchangeable interactions by considering the space L²(P₂(R^d)).
- It leads to the study of a collection indexed by $u \in I$ of fully coupled FBSDE for which we are able to prove existence and uniqueness under standard assumptions on the model coefficients.
- We provide a semi-analytic form of the LQ graphon model as it leads to the study of rectangular Ricatti equations which cannot be solved explicitly evene in simplified models.

A D N A B N A B N A B N

Conclusion

Some natural extensions to our work

On the extended NE-MFC problem

We can extend our work to extended MFC of non exchangeable systems where the dynamics are given by :

$$\begin{split} dX_t^u &= b(u, X_t^u, \alpha_t^u, (\mathbb{P}_{(X_t^v, \alpha_t^v)})_{v \in I}) \mathrm{d}t + \sigma(u, X_t^u, \alpha_t^u, (\mathbb{P}_{(X_t^v, \alpha_t^v)})_{v \in I}) \mathrm{d}W_t^u, \quad 0 \leq t \leq T, u \in I, \\ X_0^u &= \xi^u. \end{split}$$

< □ > < □ > < □ > < □ > < □ >

Conclusion

Some natural extensions to our work

On the extended NE-MFC problem

We can extend our work to extended MFC of non exchangeable systems where the dynamics are given by :

$$\begin{split} dX_t^u &= b(u, X_t^u, \alpha_t^u, \big(\mathbb{P}_{(X_t^v, \alpha_t^v)}\big)_{v \in I}\big) \mathrm{d}t + \sigma(u, X_t^u, \alpha_t^u, \big(\mathbb{P}_{(X_t^v, \alpha_t^v)}\big)_{v \in I}\big) \mathrm{d}W_t^u, \quad 0 \leq t \leq T, u \in I, \\ X_0^u &= \xi^u. \end{split}$$

 \rightarrow Need to extend the tools we introduced in this presentation like done in [4]

 \rightarrow The optimization problem is not as simply characterized by a pointwise minimization of the Hamiltonian H.

A D N A B N A B N A B N

Conclusion

Some natural extensions to our work

On the extended NE-MFC problem

We can extend our work to extended MFC of non exchangeable systems where the dynamics are given by :

$$\begin{split} dX_t^u &= b(u, X_t^u, \alpha_t^u, (\mathbb{P}_{(X_t^v, \alpha_t^v)})_{v \in I}) \mathrm{d}t + \sigma(u, X_t^u, \alpha_t^u, (\mathbb{P}_{(X_t^v, \alpha_t^v)})_{v \in I}) \mathrm{d}W_t^u, \quad 0 \leq t \leq T, u \in I, \\ X_0^u &= \xi^u. \end{split}$$

 \rightarrow Need to extend the tools we introduced in this presentation like done in [4]

 \rightarrow The optimization problem is not as simply characterized by a pointwise minimization of the Hamiltonian H.

On the heuristic link between (\mathbf{Y}, \mathbf{Z}) and the value function v

Denoting by v the value function associated to the optimization problem (3) and (4), it is shown in [1] that v is law invariant and therefore can be defined on $L^2(\mathcal{P}_2(\mathbb{R}^d))$ and one can heuristically expect that :

$$Y_t^u = \partial \frac{\delta}{\delta m} v \big(t, (\mathbb{P}_{X_t^v})_{v \in I} \big) (u, X_t^u)$$

Future works on NE - MFC

- Study of the convergence of the *N*-agent system towards the limit candidate either by showing convergence of value functions of both problems or convergence of optimal controls.
- Discrete time version of the Maximum principle and the DPP on the NE-MFC problem.
- Study of the NE MFC with common noise.
- Numerical algorithms in the context of a finite number of players :

(1) In a model-based setting : Learning optimal controls $\alpha = (\alpha^{1,N}, \dots, \alpha^{N,N})$ and value function V_N through DL algorithms.

(2) In a model-free setting : Learning optimal controls $\alpha = (\alpha^{1,N}, \dots, \alpha^{N,N})$ and value function V_N through RL algorithms.

イロト イヨト イヨト

References

- A.De Crescenzo, M.Furhman, I.Kharroubi, H.Pham, 2024, "Mean field control of non exchangeable mean field systems"
- A.De Crescenzo, F.De Feo, H.Pham, 2025, "Linear-quadratic optimal control for non-exchangeable mean-field SDEs and applications to systemic risk"
- R.Carmona, F.Delarue, 2018, "Probabilistic Theory of Mean Field games with Applications"
 - B.Acciaio, J.Backhoff-Veraguas, R.Carmona, 2018, *Extended Mean Field Control Problems: stochastic maximum principle and transport perspective*
 - X.Wei, H.Pham, 2017, Bellman equation and viscosity solutions for mean-field stochastic control problem
- E.Bayraktar, R.Wu, X.Zhang, 2022, *Propagation of Chaos of Forward-Backward Stochastic Differential Equations with Graphon Interactions*
- A.Aurell, R.Carmona, M.Laurière, 2021, *Stochastic Graphon Games: II. The Linear-Quadratic Case*