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Introduction
Motivation for non exchangeable mean field systems

Motivations for non exchangeable mean field systems
‚ MFC theory : Interactions through symmetric particles and homogeneous interactions, through empirical

measure 1
N
řN

j“1 δ
Xj,N

t
.

‚ NE-MFC : Particle i P rr1, Nss interacts through

řN
j“1 ξi,j δ

Xj,N
t

řN
j“1 ξi,j where pξi,j

q1ďjďN refers to interactions

weights between i and j assuming no isolated particle, i.e.
řN

j“1 ξi,j
ą 0.

Ñ Graphon case : ξi,j
“ Gp i

N , j
N q.

‚ Taking heuristically the limit as N Õ 8, agent labeled by u P I :“ r0, 1s interacts through weighted
probability measure

I Q u ÞÑ

ş

I Gpu, vqPXv
t

pdxqdv
ş

I Gpu, vqdv
q P PpRd

q, 0 ď t ď T , u P I,

and dynamics of the controlled state system
$

&

%

dXu
t “ b

`

u, Xu
t , αu

t ,

ş

I Gpu,vqPXv
t

pdxqdv
ş

I Gpu,vqdv
˘

dt ` σ
`

u, Xu
t , αu

t ,

ş

I Gpu,vqPXv
t

pdxqdv
ş

I Gpu,vqdv
˘

dW u
t

Xu
0 “ ξu.
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Introduction
Mean-field approach to large population stochastic control : A strong formulation

A strong formulation
Dynamics of the controlled state processes:

#

dXu
t “ bpu, Xu

t , αu
t , pPXv

t
qvPI qdt ` σpu, Xu

t , αu
t , pPXv

t
qvPI qdW u

t , 0 ď t ď T , u P I,
Xu

0 “ ξu .
(1)

Cost Functional : Aim to minimize over a collection of processes α “ pαuquPI in a suitable class
A

JS pαq “

ż

I
E
“

ż T

0
f pu, Xu

t , αu
t , pPXv

t
qvPI qdt ` gpu, Xu

T , pPXv
T

qvPI q
‰

du (2)

Ñ Compute V S
0 “ JS pα‹q where α‹ is a minimizer of JS .

‚ Maps pb, σ, f , gq are defined over the space

L2pI; P2pRd qq “
␣

u Ñ µu is measurable and
ż

I
W2pµu , δ0q2du ă `8

(

.

‚ Lack of measurability of the map pu, ωq ÞÑ Xupωq on the space product pI ˆ Ω, BpIq b Aq.
Control problem is defined at the level of the law of the processes PpXu ,αu ,W uq.
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Introduction
Mean-field approach to large population stochastic control : A label-state formulation

Since we are working at the level of the laws of the processes and for numerical purposes, we can
relax the control problem formulation (1)-(2)

A label state formulation
Dynamics of the controlled state processes:

#

dXt “ bpU, Xt , αt , PpU,Xt qqdt ` σpU, Xt , αt , PpU,Xt qqdWt , 0 ď t ď T
X0 “ ξ.

(3)

Cost Functional : Aim to minimize over α over a suitable class A

JW pαq “ E
”

ż T

0
f pU, Xt , αt , PpU,Xt qqdt ` gpU, XT , PpU,XT qq

ı

(4)

Ñ Compute V W
0 “ JW pα‹q where α‹ is a minimizer of JW .

Maps pb, σ, f , gq are defined over the space

Pλ
2 pI ˆ Rd q “

␣

µ P P2pI ˆ Rd q : pr17µ “ λ
(

.
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Introduction
Connection between the two formulations

Connection between strong and label-state formulation
‚ We prove V S

0 “ V W
0 . It relies essentially on

PpXu
t ,αu

t q “ PpXt ,αt q|U“u , du a.e, (5)

when given the same policy map â.
‚ Label-state formulation is more suitable for numerical methods.
‚ Strong formulation is more suitable for path-wise interpretation.

Objectives
‚ Adapt the Pontryagin Maximum Principle to mean field control for non exchangeable mean

field systems (NE-MFC) to find necessary and sufficient conditions for an admissible optimal
control α.

‚ Propose an illustration in the Linear Quadratic (LQ) case with numerical illustrations.
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Analysis tools on Pλ
2 pI ˆ Rdq

Differentiability and convexity

Gateaux derivative on Pλ
2 pI ˆ Rd q

Let f : Pλ
2 pI ˆ Rd q Ñ R. For U, X , Y P L2`Ω, F , P, Rd˘ such that PpU,Xq, PpU,Y q P Pλ

2 pI ˆ Rd q,
we have

lim
ϵÑ0

1
ϵ

`

f pPpU,X`ϵY qq ´ f pPpU,Xqq
˘

“ Ẽ
”

Bx̃
δ

δm
f pPpU,XqqpŨ, X̃q ¨ Ỹ q

ı

(6)

where pŨ, X̃ , Ỹ q is an independent copy of pU, X , Y q on pΩ̃, F̃ , P̃q.

Ñ Such function Pλ
2 pI ˆ Rd q ˆ I ˆ Rd Q pµ, ũ, x̃q ÞÑ δ

δm f pµqpũ, x̃q P R is called linear functional
derivative of f .

Convexity on Pλ
2 pI ˆ Rd q

Let f : I ˆ Rd ˆ Pλ
2 pI ˆ Rd q Ñ R. f is said to be convex if for every u P I, x , x 1 P Rd ,

µ, µ1 P L2`P2pRd q
˘

, we have :

f pu, x 1, µ1q ´ f pu, x , µq ě Bx f pu, x , µq.px 1 ´ xq

` E
”

Bx̃
δ

δm
f pu, x , µqpU, Xq.pX 1 ´ Xq

ı

. (7)

where pU, X 1q „ µ1 and pU, Xq „ µ.
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The Pontryagin formulation
Definition of the Hamiltonian map H

Definition of the Hamiltonian H
The Hamiltonian R-valued function H of the stochastic optimization problem is defined
as :

Hpu, x , µ, y , z, aq “ bpu, x , µ, aq ¨ y ` σpu, x , µ, aq : z ` f pu, x , µ, aq (8)

where pu, x , µ, y , z, aq P I ˆ Rd
ˆ Pλ

2 pI ˆ Rd
q ˆ Rd

ˆ Rdˆn
ˆ A.

Ñ Compute an optimality criterion involving the Hamiltonian H assuming differentiability
and convexity as defined previously over the space Pλ

2 pI ˆ Rd
q.

Ñ In the following, A will denote a convex subset of Rm for m P N˚.
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Probabilistic set-up for non exchangeable mean field SDEs
Adjoint Equations to X

Adjoint Equations to X
We call adjoint processes of X any pair pY , Zq in S2

pr0, T s; Rd
q ˆ H2

pr0, T s; Rdˆn
q such

that pY , Zq is solution to the adjoint equation
$

’

&

’

%

dYt “ ´Bx HpU, Xt , PpU,Xt q, Yt , Zt , αtqdt ` ZtdWt

´Ẽ
“

Bx
δ

δm HpŨ, X̃t , PpU,Xt q, Ỹt , Z̃t , α̃tqpU, Xtq
‰

dt , t P r0, T s ,

YT “ Bx gpU, XT , PpU,XT qq ` Ẽ
“

Bx
δ

δm gpŨ, X̃T , PpU,XT qqpU, XT q
‰

,

(9)

where pX̃ , Ỹ , Z̃ , α̃q is an independent copy of pX , Y , Z , αq defined on pΩ̃, F̃ , P̃q.

Ñ We retrieve the adjoint equations of the standard Pontryagin formulation but here
with the addition of the label randomization U, i.e via PpU,Xt q and extension of Lions’s
derivative over Pλ

2 pI ˆ Rd
q.
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where pX̃ , Ỹ , Z̃ , α̃q is an independent copy of pX , Y , Z , αq defined on pΩ̃, F̃ , P̃q.

Ñ We retrieve the adjoint equations of the standard Pontryagin formulation but here
with the addition of the label randomization U, i.e via PpU,Xt q and extension of Lions’s
derivative over Pλ

2 pI ˆ Rd
q.

Ecole Polytechnique (CMAP) NEMFC - Maximum principle 27 January 2026 8 / 17



Dr
af

t

Derivation of a Pontryagin Optimality Condition
A necessary condition

We now state the main results which are obtained under some regularity assumptions on
b, σ, f and g .

Gâteaux derivative of J
For β P A such that α ` ϵβ P A for ϵ ą 0 small enough, we have :

lim
ϵÑ0

1
ϵ

`

JW
pα ` ϵβq ´ JW

pαq
˘

“ E
”

ż T

0

´

BαHpU, Xt , PpU,Xt q, Yt , Zt , αtq ¨ βt

¯

dt
ı

where X is given by (3), pY , Zq are given by (9) and the Hamiltonian function H is given
by (8).

Necessary condition for optimality of α

Moreover, if we assume that H is convex in a P A, that α “ pαtq,0ďtďT is optimal, that
X “ pXtq0ďtďT is the associated optimal control state given by (3) and that
pY , Zq “ pYt , Ztq0ďtďT are the associated adjoint processes solving (9), then we have :

@a P A, HpU, Xt , PpU,Xt q, Yt , Zt , αtq ď HpU, Xt , PpU,Xt q, Yt , Zt , aq dt b dP a.e (10)

Ecole Polytechnique (CMAP) NEMFC - Maximum principle 27 January 2026 9 / 17



Dr
af

t

Sufficient condition for optimality of α
A sufficient condition

Sufficient condition for optimality of α

Let α P A, X “ pXt q0ďtďT the corresponding controlled state process and
pY , Zq “ pYt , Zt q0ďtďT the corresponding adjoint processes.

p1q Rd ˆ Pλ
2 pI ˆ Rd q Q px , µq Ñ gpU, x , µq is convex dP a .e

p2q Rd ˆ Pλ
2 pI ˆ Rd q ˆ A Q px , µ, aq Ñ HpU, x , µ, Yt , Zt , aq is convex dt b dP a.e

If we assume also following the necessary condition for optimality :

HpU, Xt , PpU,Xt q, Yt , Zt , αt q “ inf
βPA

HpU, Xt , PpU,Xt q, Yt , Zt , βq, dt b dP a.e

Then, α is an optimal control in the sense that Jpαq “ inf
α1PA

Jpα1q
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Linear quadratic control problem
The non exchangeable LQ model

Linear quadratic optimal control problem
We consider the following class of models (assuming for sake of simplicity σ constant and
A “ Rm).

$

’

’

&

’

’

%

dXt “

”

βpUq ` ApUqXt ` ẼpŨ,X̃t q„PpU,Xt q

“

GApU, ŨqX̃t
‰

` BpUqαt

ı

dt ` γpUqdWt , t P r0, T s

“

”

βpUq ` ApUqXt `
ş

IˆRd
“

GApU, vqx
‰

PpU,Xt qpdv , dxq ` BpUqαt

ı

` γpUqdWt , t P r0, T s

X0 “ ξ,

where β P L8
pI; Rd

q, γ P L8
pI; Rd

q, A P L8
pI, Rdˆd

q , B P L8
pI; Rdˆm

q and GA P L2
pI ˆ I; Rdˆd

q.

Quadratic cost functional

Jpαq “ E

„
ż T

0

”

QpUq
`

Xt ´ ẼrŨ,X̃t q„PpU,Xt qs

“

G̃QpU, ŨqX̃t
‰˘

¨
`

Xt ´ ´ẼrŨ,X̃t q„PpU,Xt q

“

G̃QpU, ŨqX̃t
‰

` αt ¨ R pUqαt ` 2αt ¨ ΓpUqXt ` 2αt ¨ ẼpŨ,X̃t q„PpU,Xt q

“

GI pU, ŨqX̃t
‰

ı

dt

` HpUq
`

XT ´ ẼrŨ,X̃t q„PpU,Xt q

“

G̃H pU, ŨqX̃t
‰˘

¨
`

XT ´ ẼrŨ,X̃t q„PpU,Xt q

“

G̃H pU, ŨqX̃t
‰˘

ȷ

(11)
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Xt ´ ´ẼrŨ,X̃t q„PpU,Xt q

“

G̃QpU, ŨqX̃t
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(11)
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A linear quadratic model
Characterization of optimal control

Proposition : Optimal control in the LQ case
In the Linear quadratic model, the unique optimal control α̂ “ pα̂t q0ďtďT is given by

α̂t “ St pUqXt ` ẼpŨ,X̃t q„PpU,Xt q

”

S̄t pU, ŨqX̃t

ı

` Γt pUq, 0 ď t ď T , (12)

where X “ pXt q0ďtďT is the unique solution to the SDE obtained after replacing α̂t by (12) and where we
denoted

$

’

’

’

’

&

’

’

’

’

%

St pUq “ ´pRpUqq
´1

´

pBpUqq
JKt pUq ` ΓpUq

¯

,

S̄t pU, Ũq “ ´pRpUqq
´1

´

pBpUq
JK̄t pU, Ũq ` GI pU, Ũq

¯

Γt pUq “ ´pRpUqq
´1

pBpUqq
JΛt pUq

where K P C1`r0, T s; L8pI; Sd
`q

˘

, K̄ P C1`r0, T s, L2pI ˆ I; Rdˆd q
˘

and Λ P C1`r0, T s; L2pI; Rd q
˘

are to be determined through infinite dimensional Riccati equations.
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A linear quadratic model
Systemic risk model: Extension of Carmona, Fouque, Sun (2015)

Systemic risk model with heterogeneous banks
Dynamics of the controlled state processes:

#

dXt “

”

κpXt ´ ẼpŨ,X̃t q„PpU,Xt q

“

GκpU, ŨqX̃t
‰

` αt

ı

dt ` σdWt , 0 ď t ď T ,

X0 “ ξ.

Cost Functional :

Jpαq “ E

«

ż T

0

#

ηpUq

´

Xt ´ ẼpŨ,X̃t q„PpU,Xt q

“

GηpU, Ũq X̃t
‰

¯2

` qpUq αt

´

Xt ´ ẼpŨ,X̃t q„PpU,Xt q

“

GqpU, Ũq X̃t
‰

¯

` α
2
t

+

dt

` rpUq

´

XT ´ ẼpŨ,X̃t q„PpU,Xt q

“

Gr pU, Ũq X̃T
‰

¯2
ff

. (13)
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Numerical methods for learning the optimal control

Numerical methods for learning the optimal feedback control map â.
Deep Graphon :

‚ Direct parametrization of the control via a Neural Network in feedback form in view of (12) solved by
standard gradient descent algorithm.

‚ To learn functions defined over Pλ
2 pI ˆ Rd

q Ñ conditional moment neural network where we
approximate µ P Pλ

2 pI ˆ Rd
q by its conditional moments.

Deep BSDE Graphon :
‚ Optimal control learnt in view of (10) since

α̂t “ apU, t, Xt , PpU,Xt q, Yt q “ arg min
aPA

HpU, Xt , PpU,Xt q, Yt , aq.

Ñ Learn pX , Y q by exploiting the FBSDE equation.
‚ We use 2 neural networks Uθpµqpu, xq and Zθpt, µqpu, xq to approximate initial value of Y and the Z

component and we minimiser over θ the cost functional

θ ÞÑ Lpθq “ E
”

|Y θ
T ´ GpXθ

T , P
pU,Xθ

T q
q|

2
ı

,

Starting from UθpPpU,X0qqpU, X0q, we diffuse
$

’

&

’

%

Xθ
ti`1

“ Xθ
ti

` BpU, Xθ
ti

, Y θ
ti

, P
pU,Xθ

ti
q

q∆t ` σ∆Wti`1

Y θ
ti`1

“ Y θ
ti

` H
`

U, Xθ
ti

, Y θ
ti

, Zθpti , P
pU,Xθ

ti q

qpU, Xθ
ti

q, P
pU,Xθ

ti
q

˘

∆t ` Zθpti , PpU,Xti qqpU, Xti q∆Wti`1

for certains maps B, H depending on model coefficients.
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Ñ Learn pX , Y q by exploiting the FBSDE equation.
‚ We use 2 neural networks Uθpµqpu, xq and Zθpt, µqpu, xq to approximate initial value of Y and the Z

component and we minimiser over θ the cost functional

θ ÞÑ Lpθq “ E
”

|Y θ
T ´ GpXθ

T , P
pU,Xθ

T q
q|

2
ı

,

Starting from UθpPpU,X0qqpU, X0q, we diffuse
$

’

&

’

%

Xθ
ti`1

“ Xθ
ti

` BpU, Xθ
ti

, Y θ
ti

, P
pU,Xθ

ti
q

q∆t ` σ∆Wti`1

Y θ
ti`1

“ Y θ
ti

` H
`

U, Xθ
ti

, Y θ
ti

, Zθpti , P
pU,Xθ

ti q

qpU, Xθ
ti

q, P
pU,Xθ

ti
q

˘

∆t ` Zθpti , PpU,Xti qqpU, Xti q∆Wti`1

for certains maps B, H depending on model coefficients.
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A linear quadratic model
Numerical experiments

Application with σ “ 1, η “ 0.73, q “ 0.8, r “ 0.22 and κ “ 0.62 :
Method Riccati Deep Graphon Deep BSDE Graphon
Value 0.58830 0.58826 0.58820

Table: Expected cost function using M “ 10000 in simulation with Gpu, vq “ e´uv .

Figure: Optimal trajectory of X with
u “ 0.708

Figure: Optimal trajectory of X with
u “ 0.599

Figure: Comparison between NN solvers and the Riccati one with Gpu, vq “ e´uv
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Conclusion
Some concluding remarks

Summary of the talk
‚ We introduced a general class of non exchangeable mean field systems.
‚ We present an application of our framework to the case of LQ optimal control

problem where we exhibit a new infinite-dimensional system of Riccati equations and
we show numerically how to solve the optimal control problem through Deep
learning algorithms.

Future Works
‚ In the present setting, agents interact through a specified graph/graphon structure

but it could be interesting to add a control perspective on the agent’s interactions.
‚ Adding some randomness in the graph structure would lead to the study of

dynamical systems with random interactions ùñ Bridge with Random Matrix
Theory and Operator-Theory.
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Thank you for your attention
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