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Introduction

Motivation for non exchangeable mean field systems

Motivations for non exchangeable mean field systems

e MFC theory : Interactions through symmetric particles and homogeneous interactions, through empirical

measure 3 >/ SN
t
ZJ’-VZI Ei’jSXj,N o
o NE-MFC : Particle i € [[1, N]| interacts through v’\/isr/t where (&79)1<j<n refers to interactions
2j—1 E

weights between i and j assuming no isolated particle, i.e. ZJ’.VZI &> 0.
— Graphon case : £ = G(4, 4).

e Taking heuristically the limit as N 7 00, agent labeled by u € / := [0, 1] interacts through weighted
probability measure

§, G(u, v)PX;/ (dx)dv
§, G(u, v)dv

and dynamics of the controlled state system

§; G(u,v)PXtv (dx)dv
T, G(a,v)dv

I3u— YeP(RY), 0<t<T, uel,

§; G(u,v)Pxv (dx)dv
dxy = b(u,Xt”,a;’, dt+a(u,X;’,a‘;,W dW;

Xy =g
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Introduction

Mean-field approach to large population stochastic control : A strong formulation

A strong formulation

Dynamics of the controlled state processes:

{dxg = blu, X¢, o, (Pxy)uen)dt + o(u Xfs ot (Px)ue)dWE, 0<t<Towel,
Xy =g

Cost Functional : Aim to minimize over a collection of processes a = (a!),¢e in a suitable class

A

J5( )=JE[JTf( XY, ¥ (Py)ver)dt + g(u, X
« U, Aty 0, (EXY )vel g(u, Tv(PX;)vE/)]dU (2)
1 Jo

— Compute V¥ = J°(a*) where o* is a minimizer of J°.

e Maps (b, o, f, g) are defined over the space
L2(1; P2(RY)) = {u— p" is measurable and J Wha(ut, 80)%du < +0}.
I
o Lack of measurability of the map (u,w) — X“(w) on the space product (I x Q,B(/) ® A).

Control problem is defined at the level of the law of the processes P(xu qu wu).
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Introduction

Mean-field approach to large population stochastic control : A label-state formulation

Since we are working at the level of the laws of the processes and for numerical purposes, we can

relax the control problem formulation (1)-(2)

A label state formulation

Dynamics of the controlled state processes:

dXt = b(Uthyat,P(U,Xt))dtJrU(nyt’atyp(U,Xt))dWh OS t< T (3)
Xo =¢.
Cost Functional : Aim to minimize over o over a suitable class A
T
M (@) = E[ [ F(U, Xes 00, Pru ) + £(U, Xr Prwcy) )
— Compute V¥V = JW(a*) where o* is a minimizer of JV.
v

Maps (b, o, f, g) are defined over the space
P2 (I x RY) = {pePa(l x RY) : pryyu = A}.
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Introduction
Connection between the two formulations

Connection between strong and label-state formulation
o We prove VOS = VOW. It relies essentially on
Pix#,av) = P(xi,a0 u=u, du a.e, (5)
when given the same policy map 3.
e Label-state formulation is more suitable for numerical methods.

e Strong formulation is more suitable for path-wise interpretation.

Objectives

e Adapt the Pontryagin Maximum Principle to mean field control for non exchangeable mean
field systems (NE-MFC) to find necessary and sufficient conditions for an admissible optimal
control a.

e Propose an illustration in the Linear Quadratic (LQ) case with numerical illustrations.
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Analysis tools on P2 (I x RY)

Differentiability and convexity

Gateaux derivative on P3(/ x R?)

Let f: P(I x RY) — R. For U, X, Y € L2(Q,F,P,R9) such that Py xy,P(y,y) € P2 (I x RY),

we have

im 2 (F(P(wx-e)) = F(P(wx))) = E[o5 o (P ) (0, %) - ¥)] (6)

e—0€

where (U, X, ¥) is an independent copy of (U, X, Y) on (€, F,P).

— Such function P2 (I x RY) x | x R 5 (p, i, %) — %f(u)(ﬁ,)?) € R is called linear functional
derivative of f.
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where (U, X, ¥) is an independent copy of (U, X, Y) on (€, F,P).

— Such function P2 (I x RY) x | x R 5 (p, i, %) — %f(u)(ﬂ,)?) € R is called linear functional
derivative of f.

v
: A d
Convexity on Ps'(/ x RY)
Let f: / x RY x P} (I x RY) — R. f is said to be convex if for every u € I, x, x’ € R?,
1, 1 € L2(P2(RY)), we have :
fu,x', 1) — F(u,x, 1) = 0xf(u,x, 1).(x — x)
é
+ E[&;—f(u,x,,u)(U,X).(X’ _X)]. @)
om
where (U, X") ~ p/ and (U, X) ~ p.
~
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The Pontryagin formulation

Definition of the Hamiltonian map H

Definition of the Hamiltonian H

The Hamiltonian R-valued function H of the stochastic optimization problem is defined
as :

H(U7X7/"L7y7z7a) = b(u7X7lLL7a) .y+a(u7x7u7a):z+ f(u7X7/J'7a) (8)

where (u,x, 11, y,2,3) € | x RY x P2(I x RY) x R? x R¥*" x A.

— Compute an optimality criterion involving the Hamiltonian H assuming differentiability
and convexity as defined previously over the space P3'(/ x R?).
— In the following, A will denote a convex subset of R” for m e N*.
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Probabilistic set-up for non exchangeable mean field SDEs
Adjoint Equations to X

Adjoint Equations to X
We call adjoint processes of X any pair (Y, Z) in S?([0, T]; R?) x H?([0, T];R?*") such
that (Y, Z) is solution to the adjoint equation
dY: = _axH(Ua Xta P(U,Xr)7 YT? ZT? af)dt + Z.dW;
—E[0x 2 H(U, Xe, Pux), Ye, Ze,6e) (U, Xe)]dt, te [0, T], 9)
Yr = Xg(U, XT, P(U,XT)) +[E [aX%g(Uv XT, P(UﬂxT))(Ua XT)] ,

where (X, Y,Z,&) is an independent copy of (X, Y, Z,«) defined on (Q, F,P).
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Adjoint Equations to X

Adjoint Equations to X

We call adjoint processes of X any pair (Y, Z) in S?([0, T]; R?) x H?([0, T];R?*") such
that (Y, Z) is solution to the adjoint equation

= —@XH(U, Xt, P(UA,Xr); 5 ,Oét)dt + th
—E [5X%H(U,)N(t,P(U’Xt),Vt,zt,dt)(U,Xt)] d.t7 te [07 T] 3 (9)
= xg(U, Xr, P(U,XT)) +E [8X%g(U, Xr, P(U,XT))(U, XT)] s

where (X, Y,Z,&) is an independent copy of (X, Y, Z,«) defined on (Q, F,P).

— We retrieve the adjoint equations of the standard Pontryagin formulation but here
with the addition of the label randomization U, i.e via P(y x,) and extension of Lions's
derivative over P5 (I x RY).
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Derivation of a Pontryagin Optimality Condition

A necessary condition

We now state the main results which are obtained under some regularity assumptions on
b, o, f and g.

Gateaux derivative of J

For g € A such that a + ¢8 € A for € > 0 small enough, we have :

Iiml(JW(a +€ef) — JW(a)) = E[J;)T (6aH(U,Xt, Pw.xe), Yes Zey ) - Bt)df]

e—0€

where X is given by (3), (Y, Z) are given by (9) and the Hamiltonian function H is given
by (8).

v

Necessary condition for optimality of «

Moreover, if we assume that H is convex in a € A, that & = (&) 0<e<7 Is optimal, that
X = (Xt)o<e<T is the associated optimal control state given by (3) and that
(Y,Z) = (Y4, Zt)o<t<T are the associated adjoint processes solving (9), then we have :

Vae A, HWU,Xe,Pwx), Ve, Ze,ae) < HU, Xe,Pux,, Vi, Ziya)  dt®dP a.e (10)
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Sufficient condition for optimality of «

A sufficient condition

Sufficient condition for optimality of «

Let o € A, X = (Xt)o<t<T the corresponding controlled state process and
(Y,Z) = (Yt, Zt)o<t<T the corresponding adjoint processes.

(1) R x Py (I x RY) 3 (x, ) — g(U, x, 1) is convex dP a .e
(2) RI x P3(I x RY) x A3 (x,p,a) — H(U,x, 1, Vs, Z:, a) is convex dt ® dP a.e
If we assume also following the necessary condition for optimality :

H(U7Xt7P(U>Xt)7 YT,ZT,ozt) = iﬁanH(vafrp(U,Xt)r Yr,zr,ﬁ), dt@dp a.e
€

Then, « is an optimal control in the sense that J(a) = /inf J(a)
a’e A
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Linear quadratic control problem

The non exchangeable LQ model

Linear quadratic optimal control problem
We consider the following class of models (assuming for sake of simplicity o constant and
A =R").

X = [B(U) + AU)X: + B 0,50~y x,, [CAU, D) Xe] + B(U)a|dt + y(U)dWs, t € [0, T]

= [BU) + AWIX: + § o [6a(U, VIXIP (., (dv, dx) + B(U)are| + y(U)aWs, t € [0, T]
X =¢

where 8 € L (I;RY), v € L®(I;RY), Ae L®(I,RI*Y) , Be L®(I;R¥*™) and Ga € L2(I x I;RY*%).
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The non exchangeable LQ model

Linear quadratic optimal control problem
We consider the following class of models (assuming for sake of simplicity o constant and
A =R").

X = [BU) + AWXe +E g 5y-p o, [GalU, D)K] + B(U)au [dt + (U)W, t € [0, T]

= [BU) + AWIX. + § 0 [GA U, VIXIP(w x,) (dv, dx) + B(U)ore| + 4(U)dW, t € [0, T]
X =&,

where 8 € L (I;RY), v € L®(I;RY), Ae L®(I,RI*Y) , Be L®(I;R¥*™) and Ga € L2(I x I;RY*%).

Quadratic cost functional

T ~ ~ ~ ~ ~ ~
J(e) = E“ﬂ [ Q) (X = Erg 5y wp 4 1[G (U, DIX]) - (Xe = Bpg 592, [GaUs DIX]

+ e R(U)ae + 20, - T(U)Xe + 20 - E g 5, [Gi(u, D))?t]]dt

~P,xp)

+ HU) (X7 — E[Dy;(t)wp(u,xr) [Gu(U, D)X:]) - (X7 — E[Dy)?t)wp(u,xr) [Gu(U, D)Xt])] (11)

v
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A linear quadratic model

Characterization of optimal control

Proposition : Optimal control in the LQ case
In the Linear quadratic model, the unique optimal control & = (&:)o<t<T is given by

& = S (U)X + Ep 5, [Et(m D))‘Q] +T(U), 0<t<T, (12)

~P,xe)

where X = (X;)o<t<T7 is the unique solution to the SDE obtained after replacing &; by (12) and where we
denoted

Si(U) = —(RW) ™ ((BW) T K:(U) +T(V)),
5.(U, ) = —(R(U)) ™" ((B(u) Re(U, U) + G(U, u))
Fe(U) = —(R(U))H(B(U)) A (U)

where K € C1([0, T]; L®(1;84)), K € CL([0, T], L3(I x I;R¥*)) and A € CL([0, T]; L3(I; RY))
are to be determined through infinite dimensional Riccati equations.
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A linear quadratic model

Systemic risk model: Extension of Carmona, Fouque, Sun (2015)

Systemic risk model with heterogeneous banks

Dynamics of the controlled state processes:

{dXt - [H(xt — B0 5~p y x [ (U D)X + at]dt fodW, 0<t<T,
Xo =&

Cost Functional :
T . Y \2
Ja) =E L n(U) (X = E (o5 ~r g x,, [6n (U D) X))

aF q(U) Oét(Xt — E(D’)—(f)NP(U,Xt) [Gq(U7 D) ).'(t]) aF Oéf} dt

OB 5yr,, 1600 ]|

(13)
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Numerical methods for learning the optimal control

Numerical methods for learning the optimal feedback control map a.

Deep Graphon :

e Direct parametrization of the control via a Neural Network in feedback form in view of (12) solved by
standard gradient descent algorithm.

e To learn functions defined over P, (I x RY) — conditional moment neural network where we
approximate 1 € P (I x RY) by its conditional moments.
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Numerical methods for learning the optimal control

Numerical methods for learning the optimal feedback control map a.

Deep Graphon :

e Direct parametrization of the control via a Neural Network in feedback form in view of (12) solved by
standard gradient descent algorithm.

e To learn functions defined over P, (I x RY) — conditional moment neural network where we
approximate 1 € P (I x RY) by its conditional moments.
Deep BSDE Graphon :
e Optimal control learnt in view of (10) since
& = a(U, t, X¢, P(u,x,), Yr) = arg min H(U, X;,Pu,x,), Y, a).

acA
— Learn (X, Y) by exploiting the FBSDE equation.

e We use 2 neural networks Up (1) (u, x) and Z¢(t, p)(u, x) to approximate initial value of Y and the Z
component and we minimiser over 6 the cost functional

6~ L(6) = E[|¥7 ~ G(X7. Py x0))F ]

Starting from U (P(uy,x,)) (U, Xo), we diffuse

0 _ xb 0 yo
Xy = X0+ BUXE, Y P o)A+ oMW,
i
0 0 0 yo 0
Yo = Yy THWUXG Y Zo (s, P(Uﬁxte))(U,Xt,-), P(nyte_))Af + Zo (8, Pu,x; ) ) (Us X ) AWy
i i

for certains maps B, H depending on model coefficients.
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A linear quadratic model

Numerical experiments

Application with 0 =1, n =0.73, g = 0.8, r = 0.22 and k = 0.62 :

Method
Value

Table: Expected cost function using M = 10000 in simulation with G(u,v) = e™"".

Riccati
0.58830

Deep Graphon

0.58826 0.58820

—— Deep Graphon
—— Ricatti
—— Deep Graphon BSDE

Deep BSDE Graphon

06

04

02

0.0

Figure: Optimal trajectory of X with

u=0.708

Figure: Comparison between NN solvers and the Riccati one with G(u,v) = e~
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—— Deep Graphon

— Ricatti
—— Deep Graphon BSDE

u = 0.599

NEMFC - Maximum principle

Figure: Optimal trajectory of X with
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Conclusion
Some concluding remarks

Summary of the talk

e We introduced a general class of non exchangeable mean field systems.

e We present an application of our framework to the case of LQ optimal control
problem where we exhibit a new infinite-dimensional system of Riccati equations and
we show numerically how to solve the optimal control problem through Deep
learning algorithms.
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Conclusion

Some concluding remarks

Summary of the talk
e We introduced a general class of non exchangeable mean field systems.

e We present an application of our framework to the case of LQ optimal control
problem where we exhibit a new infinite-dimensional system of Riccati equations and
we show numerically how to solve the optimal control problem through Deep
learning algorithms.

Future Works
o In the present setting, agents interact through a specified graph/graphon structure
but it could be interesting to add a control perspective on the agent's interactions.

e Adding some randomness in the graph structure would lead to the study of
dynamical systems with random interactions —> Bridge with Random Matrix
Theory and Operator-Theory.
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