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Introduction
Mean-field approach to large population stochastic control

Mean field approach to large population stochastic control
‚ Large number of agents N interacting dynamic agents/entities with heterogeneous

interactions.
‚ Agents are cooperative and act following a social planner.
‚ When N Ñ 8, we get an optimal control of mean-field type.

‚ Symmetric agents Ñ McKean-Vlasov equations
‚ Nonsymmetric agents Ñ New limiting systems

‚ Here, we focus on
‚ Discrete time, and finite / continuous state space
‚ Infinite Horizon
‚ Common noise
‚ When N Ñ 8 : Conditional Non exchangeable Markov Decision Process

(CNEMF-MDP).
Ñ Mathematical framework of reinforcement learning (RL) with many interacting
cooperative agents.
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Introduction
Framework and notations

Framework and notations
‚ Universal filtered probability space pΩ, F , F, Pq.
‚ State and action spaces: X and A (compact and Polish) and I “ r0, 1s encoding

heterogeneity of the agents labeled by u P I .
‚ PpI ˆ X q, resp PpAq, resp PpI ˆ X ˆ Aq : set of probability measures on

I ˆ X , resp A, resp I ˆ X ˆ A, with Wasserstein distance.
‚ Discrete time transition dynamics

‚ Idiosyncratic noises: pϵu
t quPI,tPN, i.i.d valued in E .

‚ Common noise: pϵ0
t qtPN for all agents, i.i.d valued in E 0.

‚ F measurable function from I ˆ X ˆ A ˆ PpI ˆ X ˆ Aq ˆ E ˆ E 0
Ñ X .

‚ Reward on infinite horizon.
‚ Discount factor β P r0, 1q.
‚ f measurable bounded function from I ˆ X ˆ A ˆ PpI ˆ X ˆ Aq Ñ R.
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Introduction
Context and motivations

The conditional McKean-Vlasov MDP problem
Conditional McKean-Vlasov Markov Decision Processes (CMKV-MDP) problem studied by Motte and Pham
(see [1]):

V pξq “ inf
αPA

V α
pξq :“ E

”

ÿ

tPN

β
t f pXt , αt , P0

pXt ,αt qq

ı

, (1)

where A is a suitable class of control with controlled state Xα
“ pXα

t qtPN dynamics given by :

Xα
t`1 “ FpXt , αt , P0

pXt ,αt q, ϵt`1, ϵ
0
t`1q, (2)

Xα
0 “ ξ.

where all the random variables are defined on an abstract filtered probability space pΩ, F, F, Pq.

Ñ The control problem (1)-(2) can be lifted on the space of measures PpX q and show
that V is law invariant, ie for 2 X -valued random variables ξ and ξ1 satisfying Pξ “ Pξ1 ,
we have V pξq “ V pξ1

q.
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Introduction
Context and motivations

Ñ Extend the known CMKV-MDP theory to the case of non exchangeable interactions.
Non exchangeable interactions are motivated by recent litterature on Graphons.

‚ Graphon mean field systems :
‚ Bayrakhtar, Chakraborty, Ruoyu Wu (22).
‚ De Crescenzo, Coppini, Pham (23).

‚ Graphon mean field control (in continuous time):
‚ Cao and Laurière (25).
‚ De Crescenzo, Fuhrman, Kharroubi and Pham (24).
‚ Kharroubi, Mekkaoui and Pham (25).

The agents labeled by u P I interact through a weighted probability measure in the form
ş

I Gpu,vqPXv
t

pdxqdv
ş

I Gpu,vqdv q where G : I ˆ I Q pu, vq ÞÑ Gpu, vq is a measurable map which measures
the weight between agents u and v .

Ñ We want to extend the framework of CMKV-MDP by introducing an adequate
modelling of the heterogeneity between the agents.
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Introduction
The N agent formulation in the CNEMF-MDP control problem

N-agent formulation
‚ State dynamics for the controlled systems XN

“ pX i,N
qiPrr1,Nss

$

’

’

’

&

’

’

’

%

X i,N
0 “ x i

0,

X i,N
t`1 “ FN p

i
N

, X i,N
t , α

i,N
t ,

1
N

N
ÿ

j“1

δ
p

j
N ,Xj,N

t ,α
j,N
t q

, ϵ
i
t`1, ϵ

0
t`1q, t P N.

‚ Value function for the N-agent system:

V α
N px0q :“

1
N

N
ÿ

i“1

E
”

ÿ

tPN

β
t fN

` i
N

, X i,N
t , α

i,N
t ,

1
N

N
ÿ

j“1

δ
p

j
N ,Xj,N

t ,α
j,N
t q

˘

ı

,

where x0 :“ px i
0qiPrr1,Nss P X N is the inital vector state of the agents. We then define

VN px0q :“ sup
αPA

V α
N px0q.

where

A :“
!

α “ pα
i
t qiP1,N,tPN : α

i is FN -adapted for each i P rr1, Nss

)

,

and where FN :“ pFN
t qtPN generated by ϵN

“
`

pϵi
t qiPrr1,Nss, ϵ0

t qtPN‹ completed with a family of mutually
i.i.d uniform random variables UN

“ pU i
t qiPrr1,Nss, tPN used for randomizing the controls pαi

qiPrr1,Nss.
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Introduction
The non exchangeable mean field limit

Strong formulation for the non exchangeable mean field limit
‚ State dynamics for the controlled systems X “ pXuquPI :

# Xu
0 “ ξu ,

Xu
t`1 “ F pu, Xu

t , αu
t , P0

pXv
t ,αv

t q
pdx , daqdv , ϵu

t`1, ϵ0
t`1q, t P N, u P I.

(3)

‚ Value function in the strong formulation:
$

&

%

V α
strongpξq :“

ş

I E
”

ř

tPN βt f pu, Xu
t , αu

t , P0
pXv

t ,αv
t q

pdx , daqdvq

ı

du,

Vstrongpξq :“ sup
αPAstrong

V α
strongpξq, ξ P I.

where ξ “ pξuquPI denotes the collection of random initial values and

Astrong :“
␣

α “ pαu
t quPI,tPN : αu

t “ αt pu, Γu , pϵu
s qsďt , pϵ0

s qsďt q for every t P N
(

.

where
Ñ Γu denotes the initial information available for agent u supposed to admit an extra
random variable Uu „ Upr0, 1sq independant of ξu and Gu “ σpΓuq-measurable.
Ñ I denotes an admissible class of initial conditions ensuring the measurability of
u ÞÑ PpXu

t ,αu
t ,pϵ0

s qsďt q for any t P N , hence the well posedness of the cost functional
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Introduction
Weak formulation for the mean field limit

Weak formulation for the non exchangeable mean field limit
‚ State dynamics for the controlled system X

#

X0 “ ξ,

Xt`1 “ F pU, Xt , αt , P0
pU,Xt ,αt q

, ϵt`1, ϵ0
t`1q, t P N.

(4)

‚ Value function in the weak formulation:
$

&

%

V α
weakpξq :“ E

”

ř

tPN βt f pU, Xt , αt , P0
pU,Xt ,αt q

q

ı

,

Vweakpξq :“ sup
αPAweak

V α
weakpξq, ξ P I.

where U is a uniform random variable pΩ, F , F, Pq encoding the heterogeneity and where

Aweak :“
␣

α “ pαt qtPN : αt “ αt pU, Γ, pϵs qsďt , pϵ0
s qsďt q for every t P N

(

.

Ñ The weak formulation (4) should be understood as a relaxed formulation of (3) which
avoids measurability issues but lacks of pathwise interpretation.
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Introduction
Goal of this presentation

We will work under the weak formulation and show further a connection with the strong
formulation.

Objectives :
‚ Show how the control problem (4)- (5) called CNEMF-MDP can be recasted as a

standard mean field control problem on the space

PλpI ˆ X q :“
␣

µ P PpI ˆ X q : pr1#µ “ λ
(

(5)

where pr1 : I ˆ X Q pu, xq ÞÑ pr1pu, xq “ u and # is the pushforward notation.
We will then characterize the value function Vweak as a fixed point of a suitable
Bellman operator on PλpI ˆ X q.

‚ Show a quantitative propagation of chaos for the convergence of the value function
of the N-agent MDP VN towards Vweak and Vstrong for all x :“ px i

qiPt1,Nu satisfying a
regularity condition to be precised later and show how to construct approximate
optimal policies for the N-agent MDP from optimal randomized feedback control of
the CNEMF-MDP.

‚ Propose a simple application of our non exchangeable mean field model to the case
of targeting advertising.
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Lifting the MDP on PλpI ˆ X q
Some regularity assumptions

Regularity assumptions on f and F
‚ Regularity on the state transition function F

E
“

d
`

F pu,x , a, µ, ϵ1
1, e0

q, F pu, x 1, a, µ1, ϵ1
1, e0

q
˘‰

ď LF
`

dpx , x 1
q ` Wpµ, µ1

q
˘

. (6)

‚ Regularity on the reward function f
ˇ

ˇf pu, x , a, µq ´ f pu, x 1, a, µ1
q
ˇ

ˇ ď Lf
`

dpx , x 1
q ` Wpµ, µ1

q
˘

. (7)

for every u P I, x , x 1
P X , a P A, µ, µ1

P PpI ˆ X ˆ Aq and e0
P E 0.

‚ The Lipschitz assumption on F is made on expectation, and not pathwisely.
‚ The definition of the mean-field limit doesn’t require any regularity assumption on

the label u.
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Lifting the MDP on PλpI ˆ X q

Lifting the MDP on PλpI ˆ X q

Define the measurable map F̃ : I ˆ X ˆ A ˆ PpI ˆ X ˆ Aq ˆ E ˆ E0 Ñ I ˆ X as

F̃ pu, x , a, µ, e, e0q “
`

u, F pu, x , a, µ, e, e0q
˘

.

‚ Set µt`1 “ P0
pU,Xt`1q

P PλpI ˆ X q. Then (using the pushforward notation #):

µt`1 “ F̃ p¨, ¨, ¨, P0
pU,Xt ,αt q

, ¨, ϵ0
t`1q#

`

P0
pU,Xt ,αt q

b λϵ

˘

P-a.s, t P N. (8)

Considering the F0-adapted control process αt “ P0
pU,Xt ,αt q

(Note that this process has to
satisfy pr12#αt “ µt), and from a suitable measurable coupling ensuring that one can find
a measurable map

p : PλpI ˆ X q ˆ PλpI ˆ X ˆ Aq Ñ PλpI ˆ X ˆ Aq,

such that pr12#ppµ, aq “ µ and if pr12#a “ µ, then ppµ, aq “. It follows that p11q can be
rewritten as

µt`1 “ F̂
`

µt , αt , ϵ0
t`1

˘

, P-a.s, t P N, (9)

with F̂ pµ, a, e0q :“ F̃
`

¨, ¨, ¨, ppµ, aq.¨, e0˘#
`

pppµ, aq b λϵ

˘

.
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Lifting the MDP on PλpI ˆ X q

Lifting the MDP on PλpI ˆ X q

‚ Similarly and with law of conditional expectations,

V α
weakpξq “ V̂ αpµ0q “ E

”

ÿ

tPN

βt f̂ pµt , αt q

ı

, with µ0 “ PpU,ξq P PλpI ˆ X q. (10)

for some measurable function f̂ : PλpI ˆ X q ˆ PλpI ˆ X ˆ Aq Ñ R explicitly derived from f :

f̂ pµ, aq :“
ż

IˆX ˆA
f
`

u, x , a, ppµ, aq
˘

ppµ, aqpdu, dx , daq.

Defining A as the set of F0´adapted processed valued in A “ PλpI ˆ X ˆ Aq and denoting
ν P A, we define

$

&

%

V̂ ν pµ0q “ E
”

ř

tPN βt f̂ pµt , νt q

ı

,

V̂ pµ0q “ sup
νPA

V̂ αpµ0q.
(11)

with dynamics µt`1 “ F̂ pµt , νt , ϵ0
t`1q.

Ñ From (10), we can see that Vweakpξq ď V̂ pµq when µ “ PpU,ξq, and the goal is to show
the equality.
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Bellman operator on the lifted MDP

Definition of the Bellman operator T
‚ Bellman operator T defined on L8

m pPλpI ˆ X qq = bounded R-valued measurable maps on
PλpI ˆ X qq.

rT W spµq :“ sup
aPA

␣

f̂ pµ, aq ` βE
“

W pF̂ pµ, a, ϵ0
1qs

‰(

, µ P PλpI ˆ X q.

‚ operator T of the lifted MDP: For W P L8
m pPλpI ˆ X qq,

“

T W
‰

pµq “ sup
aPL0pIˆX ˆr0,1s;Aq

“

TaW
‰

pµq,

where Ta is an operator defined on L8
`

PλpI ˆ X q
˘

by

“

TaW
‰

pµq :“ E
”

f pξ, apξ, Ũq, P`
ξ,apξ,Ũq

˘ ` βW
`

P0
F̃pξ,apξ,Ũq,P

pξ,apξ,Ũq
,ϵ1,ϵ0

1q

˘

ı

,

for any pξ “ pU, ξq, Ũq „ µ b Upr0, 1sq.
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Characterization by Bellman equation on PλpI ˆ X q

Theorem
‚ Law invariance. For any ξ and ξ1 X -valued random variables s.t PpU,ξq “ PpU,ξ1q,

we have Vweakpξq “ Vweakpξ1
q. We then define V pµq :“ Vweakpξq, for

µ “ PpU,ξq P PλpI ˆ X q.

‚ Dynamic Programming. We have Vweak fixed point for the operator T :

Vweakpµq “
“

T Vweak
‰

pµq, µ P PλpI ˆ X q

‚ Existence of optimal randomized feedback control a‹ for Vweakpξq in the form:

α‹
t “ a‹

pP0
pU,Xt q, U, Xt , Ũtq (12)

where pŨtqtPN sequence of i .i .d uniform random variables for some measurable
function a˚

pµ, u, x , ũq on PλpI ˆ X q ˆ I ˆ X ˆ r0, 1s.
‚ Hölder property of the value function. There exists a positive constant γ ď 1 such

that the value function function is γ-Hölder ie
ˇ

ˇ

ˇ
V pµq ´ V pµ1

q
ˇ

ˇ ď K‹Wpµ, µ1
q

γ , @pµ, µ1
q P PpI ˆ X q.
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µ “ PpU,ξq P PλpI ˆ X q.
‚ Dynamic Programming. We have Vweak fixed point for the operator T :

Vweakpµq “
“

T Vweak
‰

pµq, µ P PλpI ˆ X q

‚ Existence of optimal randomized feedback control a‹ for Vweakpξq in the form:

α‹
t “ a‹

pP0
pU,Xt q, U, Xt , Ũtq (12)

where pŨtqtPN sequence of i .i .d uniform random variables for some measurable
function a˚

pµ, u, x , ũq on PλpI ˆ X q ˆ I ˆ X ˆ r0, 1s.
‚ Hölder property of the value function. There exists a positive constant γ ď 1 such

that the value function function is γ-Hölder ie
ˇ

ˇ

ˇ
V pµq ´ V pµ1

q
ˇ

ˇ ď K‹Wpµ, µ1
q

γ , @pµ, µ1
q P PpI ˆ X q.
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The strong formulation
Problem formulation

Formulation of the strong formulation
‚ State dynamics for the controlled systems X “ pX u

quPI :
#

X u
0 “ ξu,

X u
t`1 “ F pu, X u

t , αu
t , P0

pXv
t ,αv

t qpdx , daqdv , ϵu
t`1, ϵ0

t`1q, t P N, u P I.

‚ Value function in the strong formulation :

V α
strongpξq :“

ż

I
E
”

ÿ

tPN

βt f pu, X u
t , αu

t , P0
pXv

t ,αv
t qpdx , daqdvq

ı

du, ξ “ pξu
quPI .

The value function of the conditional non exchangeable mean field control Markov
decision processes CNEMF-MDP is then defined by

Vstrongpξq :“ sup
αPA

V α
strongpξq, ξ P I.

‚ Note that the uncountable collection of i .i .d random variables pϵu
quPI induces some

measurability issues for the formulation of the strong formulation compared to the
weak formulation.
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The strong formulation
Equivalence of value functions between weak and strong formulation

Proposition (Equivalence of value functions).
Let ξ “ pξu

quPI and ξ be random variables such that Pξu “ Pξ|U“u for λ a.e u P I. Then ,
we have

Vstrongpξq “ Vweakpξq “ V pµq, µ “ PpU,ξq “ Pξu pdxqdu.

Proof.
The main idea of the proof follows from the fact that given an optimal randomized
feedback policy a for the weak formulation a, it gives an optimal feedback control for the
strong formulation by setting for the same a‹ in (12).

αstrong,u
t “ a‹

pP0
Xv

t
pdxqdv , u, X u

t , Ũu
t q,

since V αweak
weak pξq “ V αstrong

strong pξq when αweak and αstrong are associated to the same policy a.

Ñ We now denote indifferently V to denote Vstrong or Vweak.
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The N-agent problem as a MDP on state space X N and action space AN .

Formulation of the N-agent MDP
‚ State dynamics for the N-agent controlled systems XN

“ pX N
i qiPrr1,Nss

$

’

’

&

’

’

%

X i
0 “ x i

0,

X i
t`1 “ FNp

i
N , X i

t , αi
t ,

1
N

N
ÿ

j“1

δ
p

j
N ,X j

t ,α
j
t q

, ϵj
t`1, ϵ0

t`1q, t P N.
(13)

where x0 :“ px i
0qiPrr1,Nss P X N is the inital vector state of the agents.

‚ Value function for the N agent MDP.

V α
N px0q :“ 1

N

N
ÿ

i“1

E
”

ÿ

tPN

βt fN
` i

N , X i
t , αi

t ,
1
N

N
ÿ

j“1

δ
p

j
N ,X j

t ,α
j
t q

˘

ı

, (14)

VNpx0q :“ sup
αPA

V α
N px0q.
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The N-agent problem as a MDP on the space X N .

MDP on the space X N .
‚ State dynamics (13) can be written :

Xt`1 “ F N pXt , αt , ϵt`1q, (15)

with state transition function F N : X N
ˆ AN

ˆ pEN
ˆ E 0

q Ñ X N is given for x “ px i
qiPrr1,Nss,

“ pai
qiPrr1,Nss and e “

`

pei
qiPrr1,Nss, e0

q by

F N px, a, eq :“
´

FN p
i
N

, x i
, ai

,
1
N

N
ÿ

i“1

δ
p i

N ,xi ,ai q
, ei

, e0
q

¯

iPrr1,Nss
,

‚ Value function (14) for the N agent MDP :

V α
N px0q “ E

”

ÿ

tPN

β
t f N pXt , αt q

ı

. (16)

with reward function f N : X N
ˆ AN

Ñ R is given by

f N px, aq :“
1
N

N
ÿ

i“1

fN
` i

N
, x i

, ai
,

1
N

N
ÿ

i“1

δ
p i

N ,xi ,ai q

˘

, x “ px i
qiPrr1,Nss, a “ pai

qiPrr1,Nss.
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Bellman operator for the N-agent MDP

Definition of the Bellman operator on L8
m pX Nq

‚ Bellman operator for the N-agent MDP def

“

TNW
‰

pxq :“ sup
aPAN

Ta
NW pxq, x P X N .

where

Ta
NW pxq :“ fNpx, aq ` βE

”

W
`

F Npx, a, ϵ1q
˘

ı

, x P X N , a P AN .
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Propagation of chaos of value functions
Regularity of the initial conditions

Assumption on the regularity of the initial condition
For a given x :“ px1, x2, . . . , xN

q P X N , we say that x is regular if the following condition
holds true. There exists a constant C ą 0 such that for any i , j P t1, . . . , Nu,

dpx i , x j
q ď C |i ´ j|

N . (17)

The set of regular x will be denoted in the following X N
reg.

‚ The assumption (17) is crucial in the derivation of the propagation of chaos result
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Propagation of chaos of value functions
Regularity in the label state

Assumption on the regularity of f and F with respect to the label state
(i) Let N P N˚. The mapping

I Q u ÞÑ f pu, x , a, µq P R, (18)

has a bounded variation on the interval Ij “ r
j´1
N , j

N r which we denoted by V
j
N
j´1
N

pf q (by omitting the

dependance in px , a, µ) which satisfies

max
1ďjďN

sup
px,a,µqPX ˆAˆPpIˆX ˆAq

V
j
N
j´1
N

pf q ď
C

?
N

. (19)

for every j P t1, . . . , Nu and for every px , a, µq P X ˆ A ˆ PpI ˆ X ˆ Aq.
(ii)

E
“

d
`

Fpu, x , a, µ, ϵ
1
1, e0

q, Fpu1
, x 1

, a1
, µ

1
, ϵ

1
1, e0

q
˘‰

ď KF
`

dppu, x , aq, pu1
, x 1

, a1
qq ` Wpµ, µ

1
q
˘

, (20)

for every u, u1
P I, x , x 1

P X , a, a1
P A and µ, µ1

P PpI ˆ X ˆ Aq, e0
P E 0.
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Propagation of chaos of value functions
Convergence of F n and f n towards F and f

(Convergence of fN and FN towards f and F ).

There exists two positive decreasing sequences pϵf
NqNPN˚ and pϵF

NqNPN˚ converging to 0
as N Ñ 8 such that
(1)

max
1ďjďN

sup
px,a,µqPX ˆAˆPpIˆX ˆAq

|f p
j
N , x , a, µq ´ fNp

j
N , x , a, µq

ˇ

ˇ ď ϵf
N (21)

(2)

max
1ďjďN

sup
px,a,µqPX ˆAˆPpIˆX ˆAq

E
”

d
`

F p
j
N , x , a, µ, ϵi

1, ϵ0
1q, FNp

j
N , x , a, µ, ϵi

1, ϵ0
1q
˘

ı

ď ϵF
N

(22)
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Propagation of chaos of value functions

Theorem : Convergence of value functions and propagation of chaos
‚ For V value function on PλpI ˆ X q of the CNEMF-MDP, we set the lifted function rV defined on X N by

rV pxq :“ V pµ
λ
N ru, xsq, for x “ px i

qiPrr1,Nss P X N
,

where µλ
N ru, xs :“

´

řN
j“1 1Ij puqδxj pdxq

¯

du P PλpI ˆ X q.

‚ There exists some positive constant C such that for all x :“ px i
qiPrr1,Nss P X N

reg, we have
ˇ

ˇVN pxq ´ V pµ
λ
N
“

u, x
‰

q
ˇ

ˇ Ñ
NÑ8

0. (23)

Moreover, propagation of chaos rate of convergence takes the following form
ˇ

ˇVN pxq ´ V pµ
λ
N
“

u, x
‰

q
ˇ

ˇ ď C
´

MN
γ

` OpN´
γ
2 q ` ϵ

f
N ` pϵ

F
N q

γ
¯

.

with MN :“ sup
νPPpIˆX ˆAq

E
”

WpνN , νq

ı

, (νN empirical measure of ν).

It extends the result from [1] with the additional errors:
‚ OpN´

γ
2 q which represents the error due to the label convergence.

‚ ϵf
N and ϵF

N which represent the errors due to the convergence of the state dynamics
functions and the reward functions.
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Approximate optimal policies

Theorem : Approximate optimal policies
Let a‹ : PλpI ˆ X q ˆ I ˆ X ˆ r0, 1s Ñ A be an optimal randomized feedback policy for
the CNEMF-MDP satisfying the following regularity condition

E
”

ˇ

ˇ

`

apµ, u, x , Uq ´ aϵpµ, u1, x 1, Uq
ˇ

ˇ

ı

ď K
´

|u ´ u1
| ` |x ´ x 1

|

¯

, (24)

for a positive constant K ě 0. Then, denoting

πa‹,N
r px, ũq :“

`

a‹
pµλ

Nru, xs,
i
N , x i , ũi˘

iPrr1,Nss
, (25)

for x :“ px i
qiPrr1,Nss P X N

reg, ũ “ pũi
qiPt1,Nu. and defined the randomized feedback control

αr,,N
t P A as

αr,N
t “ πa‹,N

r pXt , Utq, t P N, (26)

where
␣

Ut “ pU i
t qiPt1,Nu, t P N

(

is a family of mutually i.i.d uniform random variables on
r0, 1s, is an OpMγ

N ` N´
γ
2 ` ϵf

N ` pϵF
Nq

γ
q optimal control for the N-agent MDP.
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Conclusion
Main results of our work

Conclusion of our work
‚ CNEMF-MDP lifted to optimization problem on the space PλpI ˆ X q with relaxed

controls valued in A “ PλpI ˆ X ˆ Aq with marginal constraint Ñ Standard MFC
on the Wasserstein space PλpI ˆ X q.

‚ Characterization of the value function as a fixed point of a Bellman operator.
‚ Equivalence formulation between weak and strong formulation.
‚ Existence of an optimal randomized feedback control policy a‹.

‚ Convergence of the value function VN of the N-agent MDP towards the value
function V for initial state agents x :“ px i

qiPrr1,Nss P X N
reg with explicit rate of

convergence
‚ Optimal randomized feedback control for CNEMF-MDP Ñ Quantitative

approximate optimal policy for the N-agent MDP.
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Conclusion
Further works on non exchangeable mean field systems

Future works on non exchangeable mean field systems
‚ Model with controlled interactions XN

“ pX i,N
qiPrr1,Nss

$

’

’

&

’

’

%

X i,N
t`1 “ FNp

i
N , X i,N

t ,
1
N

N
ÿ

j“1

δ
p

j
N ,X j,N

t ,β
i,j,N
t q

, ϵi
t`1, ϵ0

t`1q, t P N.

X i,N
0 “ x i

0,

where β i,j,N should be represented as the interaction term between agents i and j.
Ñ Include controlled graphon interactions 1

N
řN

j“1 GNp i
N , j

N , β i,j,N
t q.

‚ Numerical algorithms in the context of the label state formulation
p1q In continuous time :

Ñ In a model based setting : by DPP principle or by backward algorithms
based on Pontryagin formulation.
Ñ In a model-free setting : By policy gradient and actor-critic algorithms.

p2q In discrete time :
Ñ Develop reinforcement learning algorithms based on the DPP principle.

‚ LQ control problem for non exchangeable mean field systems (with common noise).
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Problem formulation for the targeted advertising problem

Problem formulation
In the sequel, we extend a targeted advertising model developped in [3] Section 3.5 to the non exchangeable mean field setting.
To this end, let C denotes a company, I an influencer working for the advertising of C which can impact customer choices. We
model the state space X “ t0, 1u where x “ 1 (resp x “ 0) indicates that x is ( is not) a customer of C . We also model the
action space A “ t0, 1u where a “ 1 (resp a “ 0) indicates if I will display (or not) an ad .

‚ Reward function : for u P I, x P X , a P A,

f pu, x, aq “ x ´ cua,

where cu is an ad cost for agent u P I. It means that if the u labeled user is a customer of C px “ 1q, it contributes to
the revenue of the company but if C had to send him an ad pa “ 1q, it costs cu to the company.

‚ State transition function. For pu, x, aq P I ˆ X ˆ A, e P r0, 1s and µ P PpI ˆ X q,

Fpu, x, a, µ, eq “

#

1eą
ş

I Gpu,vqµv pt0uqdv´2ηua if x “ 0,

1eă
ş

I Gpu,vqµv pt1uqdv`2ηua if x “ 1.

The parameters of the state transition function F can be interpreted as follows. ηu ą 0 represents the efficiency of an ad
to become or remain a customer of C for agent u and a large e indicates an intention to switch operators. The
interpretation of the state transition function is then the following: If agent u is in state 0, he’s more likely to become a
customer of C if µupt0uq is low and he receives an ad (a “ 1).
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