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Introduction

Mean-field approach to large population stochastic control

Mean field approach to large population stochastic control
o Large number of agents N interacting dynamic agents/entities with heterogeneous
interactions.
e Agents are cooperative and act following a social planner.
e When N — o0, we get an optimal control of mean-field type.
e Symmetric agents — McKean-Vlasov equations
o Nonsymmetric agents — New limiting systems
e Here, we focus on

o Discrete time, and finite / continuous state space

e Infinite Horizon

[

e When N — o0 : Non exchangeable Markov Decision Process
(CNEMF-MDP).

— Mathematical framework of reinforcement learning (RL) with many interacting
cooperative agents.
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Introduction

Framework and notations

Framework and notations
o Universal filtered probability space (2, F, F,P).
e State and action spaces: X and A (compact and Polish) and / = [0, 1] encoding
heterogeneity of the agents labeled by ue /.
o P(I x X), resp P(A), resp P(I x X x A) : set of probability measures on
I x X, resp A, resp | x X x A, with Wasserstein distance.
e Discrete time transition dynamics

e |diosyncratic noises: (€f)uer,ten, i-i.d valued in E.
e Common noise: (€2):en for all agents, i.i.d valued in E°.
o F measurable function from I x X x Ax P(I x X x A) x E x E> - X.

e Reward on infinite horizon.

e Discount factor § € [0, 1).
e  measurable bounded function from [ x X x A x P(I x X x A) —» R.
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Introduction

Context and motivations

The conditional McKean-Vlasov MDP problem

Conditional McKean-Vlasov Markov Decision Processes (CMKV-MDP) problem studied by Motte and Pham
(see [1]):

V(E) = inf V(&) = E[ T B*F(Xe, 0, Py )] 8
€ teN

where A is a suitable class of control with controlled state X = (X):en dynamics given by :

XSH = F(Xnat;P?xt,at)7€r+17€?+1); (2)
XDO‘ =£

where all the random variables are defined on an abstract filtered probability space (2, F, F, P).

— The control problem (1)-(2) can be lifted on the space of measures P(X) and show
that V is law invariant, ie for 2 X-valued random variables ¢ and ¢’ satisfying Pe = Py,
we have V(&) = V(¢).
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Introduction

Context and motivations

— Extend the known CMKV-MDP theory to the case of non exchangeable interactions.
Non exchangeable interactions are motivated by recent litterature on Graphons.
e Graphon mean field systems :
e Bayrakhtar, Chakraborty, Ruoyu Wu (22).
e De Crescenzo, Coppini, Pham (23).
e Graphon mean field control (in continuous time):
e Cao and Lauriére (25).
e De Crescenzo, Fuhrman, Kharroubi and Pham (24).
e Kharroubi, Mekkaoui and Pham (25).

The agents labeled by u € [ interact through a weighted probability measure in the form

§, G(u,v)Pyv (dx)d

%) where G : I x I 3 (u,v) — G(u,v) is a measurable map which measures
, G(u,

the weight between agents v and v.
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Introduction

Context and motivations

— Extend the known CMKV-MDP theory to the case of non exchangeable interactions.
Non exchangeable interactions are motivated by recent litterature on Graphons.
e Graphon mean field systems :
e Bayrakhtar, Chakraborty, Ruoyu Wu (22).
e De Crescenzo, Coppini, Pham (23).
e Graphon mean field control (in continuous time):

e Cao and Lauriére (25).
e De Crescenzo, Fuhrman, Kharroubi and Pham (24).
e Kharroubi, Mekkaoui and Pham (25).
The agents labeled by u € [ interact through a weighted probability measure in the form
G(u,v)Pyv (dx)d
%) where G : I x I 3 (u,v) — G(u,v) is a measurable map which measures
the weight between agents v and v.

— We want to extend the framework of CMKV-MDP by introducing an adequate
modelling of the heterogeneity between the agents.
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Introduction
The N agent formulation in the CNEMF-MDP control problem

N-agent formulation

e State dynamics for the controlled systems XN = (Xi’N)/'e[[l,N]]

N ]
Xy =X,
i i 1 Y .
XPN — Fa(, PN NS N N €y eeir),  tEN.
1 N(N N 2 (JNVX{‘NVQJ{N) €tt1r €t q1)
e Value function for the N-agent system:
il 1
N il
Vi (x0) = Zl [Z,I\,B (=, X", o, 25 g j‘N))]’
= te

where xq := (xé),-e[[ly,\,]] € X" is the inital vector state of the agents. We then define

Vin(x0) := sup V' (xo).
acA

where
A= {a = (ai),—el,N’teN cal s FN—adapted for each i € [[1, N]| },

and where FV := (.Ft’v)teN generated by ¥ = ((e;)fe[[lﬁN]],eg)teN* completed with a family of mutually
i.i.d uniform random variables U" = (U;)ieﬂl,N]], ten used for randomizing the controls (a"),e[[l,,v]].
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Introduction

The non exchangeable mean field limit

Strong formulation for the non exchangeable mean field limit

e State dynamics for the controlled systems X = (X")¢;:

Xy = &%
®3)
Xt = F(u, XY, 0, Plxy ov)(dx, da)dv, efyy, €2yq), tEN, wel.
e \alue function in the strong formulation:
Viong(&) = §E[ Seen B (0, X¥, 0, P 1 (A, da)dv)]du,
Vstrong(g) = sup Vs%rong(g)’ Eel.
e Astrong

where & = (£“),¢/ denotes the collection of random initial values and

A = {a = (o el ten : f = ae(u, T, (e!)s<t, (9)s<t) for every t € N}.
where

— ¥ denotes the initial information available for agent u supposed to admit an extra
random variable UY ~ U([0, 1]) independant of £ and G“ = o(I'Y)-measurable.

— 7 denotes an admissible class of initial conditions ensuring the measurability of
u— P(Xr” 9),cr) for any t € N, hence the well posedness of the cost functional

(e

Ecole Polytechnique (CMAP) CNEMF-MDP 22 October 2025 8/31



Introduction

Weak formulation for the mean field limit

Weak formulation for the non exchangeable mean field limit

e State dynamics for the controlled system X

3

Xo
0 (4)
Xt+1 = F(U Xt,at, (U Xe, at)’€t+176t+1) te N.

e Value function in the weak formulation:

Viaw® = E[Tien AU Xs,06,PY )]s
Vweak(g) = sup Veak(g) el
aeAweak

where U is a uniform random variable (2, F, F, P) encoding the heterogeneity and where

Aveak . — {o = (a)pen : @t = (U, T, (€s)s<t, (9)s<t) for every t € N}.

— The weak formulation (4) should be understood as a relaxed formulation of (3) which
avoids measurability issues but lacks of pathwise interpretation.
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Introduction

Goal of this presentation
We will work under the weak formulation and show further a connection with the strong

formulation.

Objectives :

e Show how the control problem (4)- (5) called CNEMF-MDP can be recasted as a
standard mean field control problem on the space

Pa(l x X) :={peP(l x X): pry#pu = A} (5)

where pry : [ x X 3 (u,x) — pry(u,x) = u and # is the pushforward notation.
We will then characterize the value function Ve as a fixed point of a suitable
Bellman operator on Py (I x X).

v

™7 i = = e
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Introduction
Goal of this presentation

We will work under the and show further a connection with the

Objectives :

e Show how the control problem (4)- (5) called CNEMF-MDP can be recasted as a
standard mean field control problem on the space

Pa(l x X) :={peP(l x X): pry#pu = A} (5)

where pry : [ x X 3 (u,x) — pry(u,x) = u and # is the pushforward notation.
We will then characterize the value function Ve as a fixed point of a suitable
Bellman operator on Py (I x X).

e Show a quantitative propagation of chaos for the convergence of the value function
of the N-agent MDP Vj towards Viyeak and Vetrong for all x := (X");E{LN} satisfying a
regularity condition to be precised later and show how to construct approximate
optimal policies for the N-agent MDP from optimal randomized feedback control of
the CNEMF-MDP.

v
— = = = Ty
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Introduction

Goal of this presentation

We will work under the and show further a connection with the

Objectives :

e Show how the control problem (4)- (5) called CNEMF-MDP can be recasted as a
standard mean field control problem on the space

Pa(l x X) :={peP(l x X): pry#pu = A} (5)

where pry : [ x X 3 (u,x) — pry(u,x) = u and # is the pushforward notation.
We will then characterize the value function Ve as a fixed point of a suitable
Bellman operator on Py (I x X).

e Show a quantitative propagation of chaos for the convergence of the value function
of the N-agent MDP Vj towards Viyeak and Vetrong for all x := (X");E{LN} satisfying a
regularity condition to be precised later and show how to construct approximate
optimal policies for the N-agent MDP from optimal randomized feedback control of
the CNEMF-MDP.

e Propose a simple application of our non exchangeable mean field model to the case
of targeting advertising.

v
— = = = Ty
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Lifting the MDP on Py(/ x X)

Some regularity assumptions

Regularity assumptions on f and F

e Regularity on the state transition function F

E[d(F(u.x, a,p, e1,€%), F(u,x',a, i 1, eo))] < Le(d(x,x") + W(p, 1)).  (6)
e Regularity on the reward function f

|f(u,x,a,p) — f(u,x',a,p1")| < Le(d(x, x") + W(p, 1')). (7)

forevery ue |, x,x' € X, ac A pu,i’ € P(I x X x A) and e° € E°.

e The Lipschitz assumption on F is made on expectation, and not pathwisely.

e The definition of the mean-field limit doesn't require any regularity assumption on
the label u.
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Lifting the MDP on Py(/ x X)

Lifting the MDP on Py (/ x X)
Define the measurable map F: I x X x Ax P(I x X x A) x E x E® - | x X as

F_(nyvaylh e, eO) = (u7 F(LI,X, a, u, e, eo))'

o Set jup41 = P(()var«}»l) € P(l x X). Then (using the pushforward notation #):
= F(,-,,PY . e )#(PO ®Xe) P-as, teN (8)
e 1 (U X ) T Gl (U Xt ar) & Ae 5 ‘
4
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Lifting the MDP on Py(/ x X)

Lifting the MDP on Py (/ x X)
Define the measurable map F: I x X x Ax P(I x X x A) x E x E® - | x X as

F_(u,x,a,u, e, eO) = (U, F(U7X7 a, u, e, eo))'

o Set jup41 = P(()U X € P(l x X). Then (using the pushforward notation #):
s At

Het+1 = IE(."7.’P(()U,Xt7at)"7E?+1)#(P(()U,Xt,at) ®>\€) P-a.s, te N. (8)

Considering the FO-adapted control process oy = P?U Xe,at) (Note that this process has to

satisfy prio#a: = p¢), and from a suitable measurable coupling ensuring that one can find
a measurable map

p:Pr(l x X) x Py(l x X x A) > Px(l x X x A),

such that pri,#p(u, @) = p and if pri,#a = p, then p(p, a) =. It follows that (11) can be
rewritten as

Pir1 = I:_(/Lt, at, e?+1), P-a.s, teN, (9)

with ﬁ(:u'v a, eO) = ,:-(’ '7"p(.u" a)"’eo)#((p(ﬂv a) ®)\e)

V.
™ = — — YT
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Lifting the MDP on Py(/ x X)

Lifting the MDP on Py (/ x X)

e Similarly and with law of conditional expectations,

Vera(€) = Vo (o) = E[ 3] 8F(ue, )|, with po = Prugy € PAI x X). (10)
teN

for some measurable function 7 : Py (I x X) x Px(I x X x A) — R explicitly derived from f :

F(u,a) := LXXXA f(u,x,a,p(p, a))p(u, a)(du, dx, da).

Defining A as the set of F'—adapted processed valued in A = P, (I x X x A) and denoting
v € A, we define

{ \:/u(#O) = E[ZtEN Bt?(“t’ Vt)]’
%4

(o) = sup Ve(uo). (11)
veA

with dynamics pi41 = l:_(yt,z/t,e?+1).

— From (10), we can see that Vieac(€) < V(1) when p = P(u,¢), and the goal is to show
the equality.

<
T mid = = Sanou@
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Bellman operator on the lifted MDP

Definition of the Bellman operator 7

e Bellman operator 7 defined on L7 (P (/ x X)) = bounded R-valued measurable maps on

Pal x X)).
[TW](w) = SUE{?(M a) + BE[W(F(p,a,]]}, mePr(lx X).
e operator 7 of the lifted MDP: For W € LL(Py (I x X)),

[TW](k) = sup [T*W](n),
ael0(Ix X x [0,1];A)

where T? is an operator defined on L® (P (I x X)) by

o i 0
[Ta W] (:u') = E[f(g»a(& U): P(&a(s’a)) + ﬁW(Pﬁ(g’a(s’a)*P(s,a(s,D)’51752))]7

for any (¢ = (U,¢),0) ~ p@U([0,1)).
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Characterization by Bellman equation on Py(/ x X)

Theorem

e Law invariance. For any & and ¢’ X-valued random variables s.t Py ¢) = Py,
we have Vieak(€) = Vieak(€'). We then define V(i) := Vieak(€), for
o= P(Uy,’c) € 'PA(I X X)
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Characterization by Bellman equation on Py(/ x X)

Theorem

e Law invariance. For any & and ¢’ X-valued random variables s.t Py ¢) = Py,
we have Vieak(€) = Vieak(€'). We then define V(i) := Vieak(€), for
o= P(U,g) € 'PA(I X X)

e Dynamic Programming. We have V.. fixed point for the operator T:

Vweak(,u) = [T\/weak] (,LL), JIAS PA(I X X)

o Existence of optimal randomized feedback control a* for Viea (&) in the form:
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Characterization by Bellman equation on Py(/ x X)

Theorem
e Law invariance. For any & and ¢’ X-valued random variables s.t Py ¢) = Py,
we have Vieak(€) = Vieak(€'). We then define V(i) := Vieak(€), for
o= P(U,.ﬁ) € ’PA(I X X)
e Dynamic Programming. We have Vi.k fixed point for the operator 7:
Vweak(,u) = [T\/weak] (,U), JIAS PA(I X X)
o Existence of optimal randomized feedback control a* for Viea (&) in the form:

Oé: = a‘*(P(()U,Xt)a Ua Xt? Dt) (12)

where (U)ten sequence of i.i.d uniform random variables for some measurable
function a*(u, u, x, i) on Pr(l x X) x I x X x [0,1].

Ecole Polytechnique (CMAP) CNEMF-MDP 22 October 2025 16 /31



Characterization by Bellman equation on Py(/ x X))

Theorem

e Law invariance. For any & and ¢’ X-valued random variables s.t Py ¢) = Py,
we have Vieak(€) = Vieak(€'). We then define V(i) := Vieak(€), for
o= P(U,ﬁ) € ’PA(I X X)

e Dynamic Programming. We have Vi.k fixed point for the operator 7:
Vweak(,U/) = [T\/weak] (,U), JIAS PA(/ X X)
o Existence of optimal randomized feedback control a* for Viea (&) in the form:

Oé: = a‘*(P(()U,Xt)a Ua Xt? Dt) (12)

where (U)ten sequence of i.i.d uniform random variables for some measurable
function a*(u, u, x, i) on Pr(l x X) x I x X x [0,1].

e Holder property of the value function. There exists a positive constant v < 1 such
that the value function function is y-Holder ie

V(p) = V()| < KW(u, 1), V(1) € P(I x X).
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The strong formulation

Problem formulation

Formulation of the strong formulation

e State dynamics for the controlled systems X = (X*)ue :

Xo = &,
{ g = F(u,X,f’,o/t',P(()Xtv’az)(dx,da)dv7e‘t’+1,€9+1)7 teN, wel.

e Value function in the strong formulation :

s?rong({) = J; E[ Z /Btf(u7 Xtuv 05?7 P(()Xt‘/,a‘t/)(dx7 da)dv)]du7 5 = (é.u)uel-

teN

The value function of the conditional non exchangeable mean field control Markov
decision processes CNEMF-MDP is then defined by

‘/strong(s) ‘= sup \/s?rong(s)v é €L,
acA

e Note that the uncountable collection of i.i.d random variables (€"),e; induces some
measurability issues for the formulation of the strong formulation compared to the
weak formulation.
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The strong formulation

Equivalence of value functions between weak and strong formulation

Proposition (Equivalence of value functions).

Let £ = (£")ues and £ be random variables such that Pew = Pgjy—, for A a.e ue /. Then,
we have

Vstrong(E) = Vweak(f) = V(M), n = P(Uyg) = Pgu (dx)du

Proof.

The main idea of the proof follows from the fact that given an optimal randomized
feedback policy a for the weak formulation a, it gives an optimal feedback control for the
strong formulation by setting for the same a* in (12).

oo — a*(P?q (dx)dv, u, X', Uf),

aweak astrong

since Voo (€) = Viirong (&) when o and o™ are associated to the same policy a.
O

i

— We now denote indifferently V' to denote Viirong O Viseak-
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The N-agent problem as a MDP on state space X"V and action space AV.

Formulation of the N-agent MDP
e State dynamics for the N-agent controlled systems X" = (X,-N),-e[[lﬁ,v]]
X5 = X,

N
i i 0
t+1 — FN Xt7at7 Z XJ aJ)a +17Et+l) teN.

where xo := (xé),-e[[l,,\,]] € XV is the inital vector state of the agents.
e Value function for the N agent MDP.

e pred)]

HMZ

N
VN(XO = Z [Z/B fN XtaahN

teN

VN(XO) = sup Vﬁ(XO).
acA

(13)

(14)
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The N-agent problem as a MDP on the space X'V.

MDP on the space XV.

e State dynamics (13) can be written :

Xer1 = Fn(Xe, at, €141), (15)
with state transition function Fy : XV x AV x (EN X EO) — &N is given for x = (x"),-e[[LN]],
= (a')jequ,ng and e = ((€)jeqr, vy, €”) by

Fuix,ae) = (Fu(y, 5 & Zé(i 0 )

e Value function (14) for the N agent MDP :

Vi (x0) = E[ 3] B Fn(Xe, o). (16)

teN

with reward function fy : N x AN S Ris given by

1
fn(x,a) := =

™M=

fn(— ,X al,— Z 5 i a,) x = (Xi)ie[[l,N]]7 a= (ai)ie[[l,N]]~
=1
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Bellman operator for the N-agent MDP

Definition of the Bellman operator on L% (XN)

e Bellman operator for the N-agent MDP def

[TaW](x) := supTaW(x), xex".

acAN

where

TyW (x) := fN(x,a)+,8E[W(FN(x,a,el))], xex", aeAV
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Propagation of chaos of value functions

Regularity of the initial conditions

Assumption on the regularity of the initial condition

For a given x := (x},x?,...,x") e XN, we say that x is regular if the following condition

holds true. There exists a constant C > 0 such that for any i,j € {1,..., N},

d(x',¥) < C% (17)

The set of regular x will be denoted in the following Xr'evg.

e The assumption (17) is crucial in the derivation of the propagation of chaos result
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Propagation of chaos of value functions

Regularity in the label state

Assumption on the regularity of f and F with respect to the label state

(i) Let N € N*. The mapping

Isuw f(u,x,a,pn) €R,

has a bounded variation on the interval /; = [’%1, ,j—v[ which we denoted by VT,
N
dependance in (x, a, 1) which satisfies
L C
N <
sup VN () < =

max
1SJSN(x,a,u)eX XAXP(IXX XA) N

for every j € {1,..., N} and for every (x,a,u) € X x AX P(l x X x A)

(ii)
E[d(F(u,x, 2, p, e1,€), F(u', X', &', ', €1, €9))] < Ke(d((u, x, 2), (o, ', ")) + W(n, 1)),

for every u,u’ € I, x,x' € X, a,a’ € Aand pu, ' € P(I x X x A), e’ € E°.

Fa
N _(f) (by omitting the

(18)

(19)

(20)
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Propagation of chaos of value functions

Convergence of F" and " towards F and f

(Convergence of fy and Fp towards f and F).

There exists two positive decreasing sequences (€h)yenx and (€5)yens converging to 0
as N — oo such that

(1)

J J f
max sup f(=,x,a,1) — fv(+,x,a, 1) <e 21
ISJSN(X,B,#)E«XXAXP(IXXXA)| (N7 ’ ) (N, o )‘ N ( )

(2)

j i 0 J i 0 F
max su E[dF—xa €1,€), Fn(5,x,a, €1, € :ISE
1<J<N(x,a,p,)e)c‘><A>[<)P(I><X><A) ( (N’ ;d, W, €1, 1)5 (Na ,d, b, €1, 1)) N
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Propagation of chaos of value functions

Theorem : Convergence of value functions and propagation of chaos

e For V value function on Py (I x X) of the CNEMF-MDP, we set the lifted function V defined on XV by

V(x) := V(uplu,x]), for x = (x)iepuny € X",
where p)[u, x] = (z;"=1 ]llj(u)éxj(dx))du e Pa(l x X).
e There exists some positive constant C such that for all x := (x"),-e[[l’,v]] € Xr’:g, we have
V(%) — V(up[u, x])] — o. (23)
N— oo
Moreover, propagation of chaos rate of convergence takes the following form

IVa(x) = Vipa[u x])| < C(My? + ON™2) + ey + (cf)”).

with My := sup E[W(UN, u)], (vn empirical measure of v).
veP (Ix X xA)

It extends the result from [1] with the additional errors:
. O(Nfg) which represents the error due to the label convergence.

o €h and €f, which represent the errors due to the convergence of the state dynamics
functions and the reward functions.
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Approximate optimal policies

Theorem : Approximate optimal policies

Let a* : Px(/ x X) x [ x X x [0,1] — A be an optimal randomized feedback policy for
the CNEMF-MDP satisfying the following regularity condition

E[|(a(u, u,x, U) — ac(p, v, x', U)|] < K(|u —u'|+|x— x'|), (24)
for a positive constant K > 0. Then, denoting

a*, ~\ * i i~
™ N(X> U) o= (a' (Nkl[uv X], N7X , u )ieﬂl,Nﬂ’ (25)

for x := (x")iequ,ng € XN, @ = (&)ieq1,ny- and defined the randomized feedback control
oM e Aas
al = 7N (X, Uy), teN, (26)

where {Ut = (U;);E{I,N}, te N} is a family of mutually i.i.d uniform random variables on
[0,1], is an O(M,, + N7 + el + (eh)?) optimal control for the N-agent MDP.
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Conclusion
Main results of our work

Conclusion of our work

o CNEMF-MDP lifted to optimization problem on the space Px(/ x X) with relaxed
controls valued in A = Py (/ x X x A) with marginal constraint — Standard MFC
on the Wasserstein space Py (/ x X).

e Characterization of the value function as a fixed point of a Bellman operator.
e Equivalence formulation between weak and strong formulation.
e Existence of an optimal randomized feedback control policy a*.
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Conclusion of our work
o CNEMF-MDP lifted to optimization problem on the space Px(/ x X) with relaxed
controls valued in A = Py (/ x X x A) with marginal constraint — Standard MFC
on the Wasserstein space Py (/ x X).
e Characterization of the value function as a fixed point of a Bellman operator.
e Equivalence formulation between weak and strong formulation.
e Existence of an optimal randomized feedback control policy a*.
e Convergence of the value function Vi of the N-agent MDP towards the value
function V for initial state agents x := (x"),-e[[l,,\,]] € Xr’!g with explicit rate of
convergence
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Main results of our work

Conclusion of our work

o CNEMF-MDP lifted to optimization problem on the space Px(/ x X) with relaxed
controls valued in A = Py (/ x X x A) with marginal constraint — Standard MFC
on the Wasserstein space Py (/ x X).

e Characterization of the as a fixed point of a Bellman operator.
e Equivalence formulation between weak and strong formulation.
e Existence of an optimal randomized feedback control policy a*.

e Convergence of the Vv of the N-agent MDP towards the value
function V for initial state agents x := (x')jeq,n] € Xr’e\’g with explicit rate of
convergence

e Optimal randomized feedback control for CNEMF-MDP — Quantitative
approximate optimal policy for the N-agent MDP.
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Further works on non exchangeable mean field systems

Future works on non exchangeable mean field systems
e Model with controlled interactions X" = (X"’N),-e[[lyN]]

g N
iyin 1 2 i 0
Xt+1 FN(N,X; N 5 J ,X{'Nﬁﬂi’j‘N)’ €It+1, et+l)7 t € N.

N i
Xo = Xo,

where 3"/
" . N 3 SN
— Include controlled graphon interactions %ijl Gn(gy, %> Be").

":N should be represented as the interaction term between agents i and ;.
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Future works on non exchangeable mean field systems
e Model with controlled interactions X" = (Xi’N);e[[lyN]]

N
i IN i 0
Xy = FN( y Xt Z L xPN gy €ty €r41),

te N.

N .
Xy = xo,
where 3"/
— Include controlled graphon interactions %ZJ{L Gn(5, % Bt M.
e Numerical algorithms in the context of the label state formulation

1)

In a model based setting : by DPP principle or by backward algorithms

based on Pontryagin formulation.
In a model-free setting : By policy gradient and actor-critic algorithms.

":N should be represented as the interaction term between agents i and ;.
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Future works on non exchangeable mean field systems
e Model with controlled interactions X" = (Xi’N);e[[lyN]]

N
i :N i 0
X+1 = FN( X Z J 7X{J\/}ﬁ;d\’v)7€t+17e1.”+1)7 teN.

PN .
Xy = xo,
where "4 should be represented as the interaction term between agents i and j.
— Include controlled graphon interactions %ZJ{L Gn (5, JN,BQ”’N).
e Numerical algorithms in the context of the label state formulation
(1 :
— In a model based setting : by DPP principle or by backward algorithms
based on Pontryagin formulation.
— In a model-free setting : By policy gradient and actor-critic algorithms.
) :

— Develop reinforcement learning algorithms based on the DPP principle.

Ecole Polytechnique (CMAP) CNEMF-MDP 22 October 2025 29 /31



Conclusion

Further works on non exchangeable mean field systems

Future works on non exchangeable mean field systems

e Model with controlled interactions X" = (X""),c1,np

N

IN © i 0
( X ZO(i,X{‘Nﬁﬁg‘j‘N)’6H’1’6H’1)’ teN.
i,N i
Xy = X
0 05

where 37" should be represented as the interaction term between agents i and j
— Include controlled graphon interactions %ZJ{L Gn (5, ’N,BQ’J’N).
e Numerical algorithms in the context of the label state formulation

1)

— In a model based setting : by DPP principle or by backward algorithms
based on Pontryagin formulation.

— In a model-free setting : By policy gradient and actor-critic algorithms.

) :
— Develop reinforcement learning algorithms based on the DPP principle.

e LQ control problem for non exchangeable mean field systems (with common n0|se)
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Problem formulation for the targeted advertising problem

Problem formulation

In the sequel, we extend a targeted advertising model developped in [3] Section 3.5 to the non exchangeable mean field setting.
To this end, let C denotes a company, / an influencer working for the advertising of C which can impact customer choices. We
model the state space X = {0, 1} where x = 1 (resp x = 0) indicates that x is ( is not) a customer of C. We also model the
action space A = {0, 1} where a = 1 (resp a = 0) indicates if / will display (or not) an ad .

o Reward function : forue I, x € X,a € A,

f(u,x,a) = x — c'a,

where c" is an ad cost for agent u € /. It means that if the u labeled user is a customer of C (x = 1), it contributes to
the revenue of the company but if C had to send him an ad (a = 1), it costs ¢ to the company.

e State transition function. For (u,x,a) € I x X x A, e€ [0,1] and p € P(I X X),

Flu,x, a, p,¢) = {le>il G yuY ({0})dv—2n¥a X =0,
DR Loy, GQuvpy (1)) dvranua X

The parameters of the state transition function F can be interpreted as follows. n > 0 represents the efficiency of an ad
to become or remain a customer of C for agent u and a large e indicates an intention to switch operators. The
interpretation of the state transition function is then the following: If agent u is in state 0, he's more likely to become a
customer of C if u”({0}) is low and he receives an ad (a = 1).
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