Non-Exchangeable Mean Field Markov Decision Processes with common noise: from Bellman equation to quantitative propagation of chaos

Samy Mekkaoui

GT MathsFi, CMAP 2025

Joint work with **Huyên Pham** (CMAP, École Polytechnique)

22 October 2025

Contents

- Introduction
 - Context and motivations
 - Problem formulation
- $oxed{egin{aligned} egin{aligned} oxed{eta} & oxed{$
 - Lifted MDP on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$
 - Bellman fixed point on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$
 - Equivalence with the strong formulation
- ${ exttt{ iny 3}}$ Propagation of chaos from V_N towards V
 - ullet The N-agent problem as a MDP on the state space \mathcal{X}^N and action space \mathcal{A}^N
 - Convergence of value functions
 - Approximate optimal policies

Mean-field approach to large population stochastic control

Mean field approach to large population stochastic control

- Large number of agents N interacting dynamic agents/entities with heterogeneous interactions.
- Agents are cooperative and act following a social planner.
- When $N \to \infty$, we get an optimal control of mean-field type.
 - Symmetric agents → McKean-Vlasov equations
 - Nonsymmetric agents → New limiting systems.
- Here, we focus on
 - Discrete time, and finite / continuous state space
 - Infinite Horizon
 - Common noise
 - When N → ∞: Conditional Non exchangeable Markov Decision Process (CNEMF-MDP).
- → Mathematical framework of reinforcement learning (RL) with many interacting cooperative agents.

4 D > 4 A > 4 B > 4 B >

Framework and notations

- Universal filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$.
- State and action spaces: \mathcal{X} and A (compact and Polish) and I = [0, 1] encoding heterogeneity of the agents labeled by $u \in I$.
 - $\mathcal{P}(I \times \mathcal{X})$, resp $\mathcal{P}(A)$, resp $\mathcal{P}(I \times \mathcal{X} \times A)$: set of probability measures on $I \times \mathcal{X}$, resp A, resp $I \times \mathcal{X} \times A$, with Wasserstein distance.
- Discrete time transition dynamics
 - Idiosyncratic noises: $(\epsilon_t^u)_{u \in I}$, i.i.d valued in E.
 - Common noise: $(\epsilon_t^0)_{t\in\mathbb{N}}$ for all agents, i.i.d valued in E^0 .
 - F measurable function from $I \times \mathcal{X} \times A \times \mathcal{P}(I \times \mathcal{X} \times A) \times E \times E^0 \to \mathcal{X}$.
- Reward on infinite horizon.
 - Discount factor $\beta \in [0, 1)$.
 - f measurable bounded function from $I \times \mathcal{X} \times \times A \times \mathcal{P}(I \times \mathcal{X} \times A) \rightarrow \mathbb{R}$.

The conditional McKean-Vlasov MDP problem

Conditional McKean-Vlasov Markov Decision Processes ($\frac{CMKV-MDP}{DP}$) problem studied by Motte and Pham (see [1]):

$$V(\xi) = \inf_{\alpha \in \mathcal{A}} V^{\alpha}(\xi) := \mathbb{E}\Big[\sum_{t \in \mathbb{N}} \beta^t f(X_t, \alpha_t, \mathbb{P}^0_{(X_t, \alpha_t)})\Big], \tag{1}$$

where $\mathcal A$ is a suitable class of control with controlled state $X^{\alpha}=(X^{\alpha}_t)_{t\in\mathbb N}$ dynamics given by :

$$X_{t+1}^{\alpha} = F(X_t, \alpha_t, \mathbb{P}_{(X_t, \alpha_t)}^0, \epsilon_{t+1}, \epsilon_{t+1}^0),$$

$$X_0^{\alpha} = \xi.$$
(2)

where all the random variables are defined on an abstract filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$.

ightarrow The control problem (1)-(2) can be lifted on the space of measures $\mathcal{P}(\mathcal{X})$ and show that V is law invariant, ie for 2 \mathcal{X} -valued random variables ξ and ξ' satisfying $\mathbb{P}_{\xi} = \mathbb{P}_{\xi'}$, we have $V(\xi) = V(\xi')$.

Context and motivations

- → Extend the known CMKV-MDP theory to the case of non exchangeable interactions. Non exchangeable interactions are motivated by recent litterature on Graphons.
 - Graphon mean field systems :
 - Bayrakhtar, Chakraborty, Ruoyu Wu (22).
 - De Crescenzo, Coppini, Pham (23).
 - Graphon mean field control (in continuous time):
 - Cao and Laurière (25).
 - De Crescenzo, Fuhrman, Kharroubi and Pham (24).
 - Kharroubi, Mekkaoui and Pham (25).

The agents labeled by $u \in I$ interact through a weighted probability measure through Graphons and functions of $\frac{\int_I G(u,v) \mathbb{P}_{\chi_t^v}(\mathrm{d}x) \mathrm{d}v}{\int_I G(u,v) \mathrm{d}v}$) where $G: I \times I \ni (u,v) \mapsto G(u,v)$ is a measurable map which measures the weight between agents u and v.

Context and motivations

- → Extend the known CMKV-MDP theory to the case of non exchangeable interactions. Non exchangeable interactions are motivated by recent litterature on Graphons.
 - Graphon mean field systems :
 - Bayrakhtar, Chakraborty, Ruoyu Wu (22).
 - De Crescenzo, Coppini, Pham (23).
 - Graphon mean field control (in continuous time):
 - Cao and Laurière (25).
 - De Crescenzo, Fuhrman, Kharroubi and Pham (24).
 - Kharroubi, Mekkaoui and Pham (25).

The agents labeled by $u \in I$ interact through a weighted probability measure through Graphons and functions of $\frac{\int_I G(u,v) \mathbb{P}_{\chi_v^v}(\mathrm{d}x) \mathrm{d}v}{\int_I G(u,v) \mathrm{d}v}$) where $G: I \times I \ni (u,v) \mapsto G(u,v)$ is a measurable map which measures the weight between agents u and v.

ightarrow We want to extend the framework of CMKV-MDP by introducing an adequate modelling of the heterogeneity between the agents.

The N agent formulation in the CNEMF-MDP control problem

N-agent formulation

• State dynamics for the controlled systems $\mathbf{X}^N = (X^{i,N})_{i \in 1,N}$

$$\begin{cases}
X_0^{i,N} = x_0^i, \\
X_{t+1}^{i,N} = F_N(\frac{i}{N}, X_t^{i,N}, \alpha_t^{i,N}, \frac{1}{N} \sum_{j=1}^N \delta_{(\frac{j}{N}, X_t^{j,N}, \alpha_t^{j,N})}, \epsilon_{t+1}^j, \epsilon_{t+1}^0), & t \in \mathbb{N}.
\end{cases}$$
(3)

• Value function for the *N*-agent system:

$$V_N^{\alpha}(\mathbf{x}_0) := \frac{1}{N} \sum_{i=1}^N \mathbb{E} \left[\sum_{t \in \mathbb{N}} \beta^t f_N\left(\frac{i}{N}, X_t^{i,N}, \alpha_t^{i,N}, \frac{1}{N} \sum_{j=1}^N \delta_{\left(\frac{j}{N}, X_t^{j,N}, \alpha_t^{j,N}\right)}\right) \right], \tag{4}$$

where $\mathbf{x}_0 := (\mathbf{x}_0^i)_{i \in 1, N} \in \mathcal{X}^N$ is the inital vector state of the agents. We then define

$$V_N(\mathbf{x}_0) := \sup_{\alpha \in A} V_N^{\alpha}(\mathbf{x}_0). \tag{5}$$

7/27

Ecole Polytechnique (CMAP)

CNEMF-MDP

22 October 2025

The non exchangeable mean field limit

Strong and weak formulation for the non exchangeable mean field limit

Strong formulation :

$$\begin{cases} X_0^u = \xi^u, \\ X_{t+1}^u = F(u, X_t^u, \alpha_t^u, \mathbb{P}_{(X_t^v, \alpha_t^v)}^0(\mathbf{d}x, \mathbf{d}a)\mathbf{d}v, \epsilon_{t+1}^u, \epsilon_{t+1}^0), & t \in \mathbb{N}, \quad u \in I. \end{cases}$$
 (6)

$$V_{\mathsf{strong}}^{\alpha}(\boldsymbol{\xi}) := \int_{I} \mathbb{E}\Big[\sum_{t \in \mathbb{N}} \beta^{t} f(u, X_{t}^{u}, \alpha_{t}^{u}, \mathbb{P}_{(X_{t}^{\mathsf{V}}, \alpha_{t}^{\mathsf{V}})}^{0}(\mathsf{d}x, \mathsf{d}a) \mathsf{d}v)\Big] \mathsf{d}u, \quad V_{\mathsf{strong}}(\boldsymbol{\xi}) := \sup_{\alpha \in \mathcal{A}} V_{\mathsf{strong}}^{\alpha}(\boldsymbol{\xi}), \quad \boldsymbol{\xi} \in \mathcal{I}.$$

Weak formulation :

$$\begin{cases}
X_0 = \xi, \\
X_{t+1} = F(U, X_t, \alpha_t, \mathbb{P}^0_{(U, X_t, \alpha_t)}, \epsilon_{t+1}, \epsilon^0_{t+1}), \quad t \in \mathbb{N}.
\end{cases}$$
(7)

$$V_{\mathsf{weak}}^{\alpha}(\xi) := \mathbb{E}\Big[\sum_{t \in \mathbb{N}} \beta^t f(U, X_t, \alpha_t, \mathbb{P}^0_{(U, X_t, \alpha_t)})\Big], \quad V_{\mathsf{weak}}(\xi) := \sup_{\alpha \in \mathcal{A}} V_{\mathsf{weak}}^{\alpha}(\xi), \quad \xi \in \mathcal{I}. \tag{8}$$

where U is a uniform random variable $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ encoding the heterogeneity.

4 D > 4 A > 4 B > 4 B >

8/27

Goal of this presentation

We will work under the weak formulation and show further a connection with the strong formulation.

Objectives:

• Show how the control problem (7)- (8) called CNEMF-MDP can be recasted as a standard mean field control problem on the space

$$\mathcal{P}_{\lambda}(I \times \mathcal{X}) := \left\{ \mu \in \mathcal{P}(I \times \mathcal{X}) : \operatorname{pr}_{1} \# \mu = \lambda \right\}$$
(9)

where $\operatorname{pr}_1:I\times\mathcal{X}\ni(u,x)\mapsto\operatorname{pr}_1(u,x)=u$ and # is the pushforward notation. We will then characterize the value function V_{weak} as a fixed point of a suitable Bellman operator on $\mathcal{P}_\lambda(I\times\mathcal{X})$.

Goal of this presentation

We will work under the weak formulation and show further a connection with the strong formulation.

Objectives:

• Show how the control problem (7)- (8) called CNEMF-MDP can be recasted as a standard mean field control problem on the space

$$\mathcal{P}_{\lambda}(I \times \mathcal{X}) := \left\{ \mu \in \mathcal{P}(I \times \mathcal{X}) : \operatorname{pr}_{1} \# \mu = \lambda \right\}$$
(9)

where $\operatorname{pr}_1:I\times\mathcal{X}\ni(u,x)\mapsto\operatorname{pr}_1(u,x)=u$ and # is the pushforward notation. We will then characterize the value function V_{weak} as a fixed point of a suitable Bellman operator on $\mathcal{P}_\lambda(I\times\mathcal{X})$.

• Show a quantitative propagation of chaos for the convergence of the value function of the N-agent MDP V_N defined in (5) towards V_{weak} and V_{strong} for all $\mathbf{x} := (\mathbf{x}^i)_{i \in \{1,N\}}$ satisfying a regularity condition to be precised later and show how to construct approximate optimal policies for the N-agent MDP from optimal randomized feedback control of the CNEMF-MDP.

Goal of this presentation

We will work under the weak formulation and show further a connection with the strong formulation.

Objectives:

• Show how the control problem (7)- (8) called CNEMF-MDP can be recasted as a standard mean field control problem on the space

$$\mathcal{P}_{\lambda}(I \times \mathcal{X}) := \left\{ \mu \in \mathcal{P}(I \times \mathcal{X}) : \operatorname{pr}_{1} \# \mu = \lambda \right\}$$
(9)

where $\operatorname{pr}_1:I\times\mathcal{X}\ni(u,x)\mapsto\operatorname{pr}_1(u,x)=u$ and # is the pushforward notation. We will then characterize the value function V_{weak} as a fixed point of a suitable Bellman operator on $\mathcal{P}_\lambda(I\times\mathcal{X})$.

- Show a quantitative propagation of chaos for the convergence of the value function of the N-agent MDP V_N defined in (5) towards V_{weak} and V_{strong} for all $\mathbf{x} := (x^i)_{i \in \{1,N\}}$ satisfying a regularity condition to be precised later and show how to construct approximate optimal policies for the N-agent MDP from optimal randomized feedback control of the CNEMF-MDP.
- Propose a simple application of our non exchangeable mean field model to the case of targeting advertising.

Contents

- Introduction
 - Context and motivations
 - Problem formulation
- ② Bellman fixed point on the space $\mathcal{P}_{\lambda}(I \times \mathcal{X})$
 - Lifted MDP on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$
 - Bellman fixed point on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$
 - Equivalence with the strong formulation
- $oxed{3}$ Propagation of chaos from V_N towards V
 - The N-agent problem as a MDP on the state space \mathcal{X}^N and action space A^N
 - Convergence of value functions
 - Approximate optimal policies

Regularity assumptions on f and F

• Regularity on the state transition function F

$$\mathbb{E}\left[d\left(F(u,x,a,\mu,\epsilon_1^1,e^0),F(u,x',a,\mu',\epsilon_1^1,e^0)\right)\right] \leqslant L_F\left(d(x,x')+\mathcal{W}(\mu,\mu')\right). \tag{10}$$

Regularity on the reward function f

$$\left|f(\mathbf{u}, \mathbf{x}, \mathbf{a}, \mu) - f(\mathbf{u}, \mathbf{x}', \mathbf{a}, \mu')\right| \leqslant L_f(\mathrm{d}(\mathbf{x}, \mathbf{x}') + \mathcal{W}(\mu, \mu')). \tag{11}$$

for every $u \in I$, $x, x' \in \mathcal{X}$, $a \in A$, $\mu, \mu' \in \mathcal{P}(I \times \mathcal{X} \times A)$ and $e^0 \in E^0$.

- The Lipschitz assumption on F is made on expectation, and not pathwisely.
- The definition of the mean-field limit doesn't require any regularity assumption on the label u.

Lifting the MDP on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$

Lifting the MDP on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$

Define the measurable map $\tilde{F}: I \times \mathcal{X} \times A \times \mathcal{P}(I \times \mathcal{X} \times A) \times E \times E^0 \rightarrow I \times \mathcal{X}$ as

$$\tilde{F}(u, x, a, \mu, e, e^{0}) = (u, F(u, x, a, \mu, e, e^{0})).$$

• Set $\mu_{t+1} = \mathbb{P}^0_{(U,X_{t+1})} \in \mathcal{P}_{\lambda}(I \times \mathcal{X})$. Then (using the pushforward notation #):

$$\mu_{t+1} = \tilde{\mathit{F}}(.,.,.\mathbb{P}^{0}_{(U,X_{t},\alpha_{t})},\epsilon^{0}_{t+1}) \# \big(\mathbb{P}^{0}_{(U,X_{t},\alpha_{t})} \otimes \lambda_{\epsilon}\big) \quad \mathbb{P}\text{-a.s}, \tag{12}$$

Bayes Formula gives $\mathbb{P}^0_{(U,X_t,\alpha_t)}=\mu_t\hat{\otimes}\hat{\alpha}_t$ where $\hat{\alpha}_t$ is a probability kernel:

$$\hat{\alpha}_t : I \times \mathcal{X} \ni (u, x) \mapsto \mathbb{P}^0_{\alpha_t \mid (U, X_t) = (u, x)} \in \mathcal{P}(A), \tag{13}$$

$$\mu_{t+1} = \hat{F}(\mu_t, \hat{\alpha}_t, \epsilon_{t+1}^0), \quad t \in \mathbb{N}, \tag{14}$$

 $\text{with } \hat{\textbf{\textit{F}}}(\hat{\mu}, \hat{\textbf{\textit{a}}}, e^0) := \tilde{\textbf{\textit{F}}}\big(.,.,.,\hat{\mu} \hat{\otimes} \hat{\textbf{\textit{a}}},.,e^0\big) \# \big((\hat{\mu} \hat{\otimes} \hat{\textbf{\textit{a}}}) \otimes \lambda_{\varepsilon} \big). \text{ and relaxed } \big(\mathcal{P}(\textbf{\textit{A}})\text{-valued}\big) \text{ feedback control } \hat{\alpha} \text{ on } \textbf{\textit{I}} \times \mathcal{X}.$

· Similarly and with law of conditional expectations, we have

$$V^{\alpha} = \mathbb{E}\Big[\sum_{t \in \mathbb{N}} \beta^{t} \hat{f}(\mu_{t}, \hat{\alpha}_{t})\Big], \tag{15}$$

12 / 27

for some measurable function $\hat{f}: \mathcal{P}_{\lambda}(I \times \mathcal{X}) \times L^{0}(I \times \mathcal{X}; \mathcal{P}(A)) \to \mathbb{R}$ explicitly derived from f.

Ecole Polytechnique (CMAP) CNEMF-MDP 22 October 2025

Definition of the Bellman operator \mathcal{T}

• operator \mathcal{T} of the lifted MDP: For $\mathcal{W} \in L_m^{\infty}(\mathcal{P}_{\lambda}(I \times \mathcal{X}))$,

$$[\mathcal{T}W](\mu) = \sup_{\hat{\mathbf{a}} \in L^{0}(I \times \mathcal{X}; \mathcal{P}(A))} [\hat{\mathcal{T}}^{\hat{\mathbf{a}}}W](\mu) = \sup_{\mathbf{a} \in L^{0}(I \times \mathcal{X} \times [0,1]; A)} [\mathbb{T}^{\mathbf{a}}W](\mu), \quad (16)$$

where $\hat{\mathcal{T}}^{\hat{a}}$ and \mathbb{T}^{a} are operators defined on $L^{\infty}ig(\mathcal{P}_{\lambda}(I imes\mathcal{X})ig)$ by

$$\begin{bmatrix}
\hat{\mathcal{T}}^{\hat{\mathbf{a}}} \mathbf{W} \end{bmatrix}(\mu) := \hat{f}(\mu, \hat{\mathbf{a}}) + \beta \mathbb{E} \left[\mathbf{W} (\hat{F}(\mu, \hat{\mathbf{a}}, \epsilon_1^0)) \right] \\
\left[\mathbb{T}^{\mathbf{a}} \mathbf{W} \right](\mu) := \mathbb{E} \left[f(\xi, \mathbf{a}(\xi, U), \mathcal{L}(\xi, \mathbf{a}(\xi, U))) + \beta \mathbf{W} \left(\mathbb{P}_{\tilde{F}(\xi, \mathbf{a}(\xi, U), \mathcal{L}(\xi, \mathbf{a}(\xi, U), \epsilon_1, \epsilon_1^0))}^{0} \right) \right],$$
(17)

for any $(\xi, U) \sim \mu \otimes \mathcal{U}([0, 1])$.

4□▶ 4□▶ 4□▶ 4□▶ □ 90○

Characterization by Bellman equation on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$

Theorem

• Law invariance. For any ξ and ξ' \mathcal{X} -valued random variables s.t $\mathbb{P}_{(U,\xi)} = \mathbb{P}_{(U,\xi')}$, we have $V_{\text{weak}}(\xi) = V_{\text{weak}}(\xi')$. We then define $V(\mu) := V_{\text{weak}}(\xi)$, for $\mu = \mathbb{P}_{(U,\xi)} \in \mathcal{P}_{\lambda}(I \times \mathcal{X})$.

Characterization by Bellman equation on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$

Theorem

- Law invariance. For any ξ and ξ' \mathcal{X} -valued random variables s.t $\mathbb{P}_{(U,\xi)} = \mathbb{P}_{(U,\xi')}$, we have $V_{\text{weak}}(\xi) = V_{\text{weak}}(\xi')$. We then define $V(\mu) := V_{\text{weak}}(\xi)$, for $\mu = \mathbb{P}_{(U,\xi)} \in \mathcal{P}_{\lambda}(I \times \mathcal{X})$.
- Dynamic Programming. We have V_{weak} fixed point for the operator \mathcal{T} :

$$V_{\text{weak}}(\mu) = [\mathcal{T}V_{\text{weak}}](\mu), \quad \mu \in \mathcal{P}_{\lambda}(I \times \mathcal{X})$$
 (18)

• Existence of optimal randomized feedback control α^* for $V_{\text{weak}}(\xi)$ in the form:

Characterization by Bellman equation on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$

Theorem

- Law invariance. For any ξ and ξ' \mathcal{X} -valued random variables s.t $\mathbb{P}_{(U,\xi)} = \mathbb{P}_{(U,\xi')}$, we have $V_{\text{weak}}(\xi) = V_{\text{weak}}(\xi')$. We then define $V(\mu) := V_{\text{weak}}(\xi)$, for $\mu = \mathbb{P}_{(U,\xi)} \in \mathcal{P}_{\lambda}(I \times \mathcal{X})$.
- Dynamic Programming. We have V_{weak} fixed point for the operator \mathcal{T} :

$$V_{\text{weak}}(\mu) = [\mathcal{T}V_{\text{weak}}](\mu), \quad \mu \in \mathcal{P}_{\lambda}(I \times \mathcal{X})$$
 (18)

• Existence of optimal randomized feedback control α^* for $V_{\text{weak}}(\xi)$ in the form:

$$\alpha_t^* = a^*(\mathbb{P}^0_{(U,X_t)}, U, X_t, V_t)$$
 (19)

where $(V_t)_{t\in\mathbb{N}}$ sequence of i.i.d uniform random variables for some measurable function $a^*(\mu, u, x, \tilde{u})$ on $\mathcal{P}_{\lambda}(I \times \mathcal{X}) \times I \times \mathcal{X} \times [0, 1]$.

4□ > 4□ > 4 = > 4 = > = 90

Formulation of the strong formulation

• State dynamics for the controlled systems $\mathbf{X} = (X^u)_{u \in I}$:

$$\begin{cases}
X_0^u = \xi^u, \\
X_{t+1}^u = F(u, X_t^u, \alpha_t^u, \mathbb{P}_{(X_t^v, \alpha_t^v)}^0(\mathrm{d}x, \mathrm{d}a)\mathrm{d}v, \epsilon_{t+1}^u, \epsilon_{t+1}^0), & t \in \mathbb{N}, \quad u \in I.
\end{cases}$$
(20)

Value function in the strong formulation :

$$V_{\mathsf{strong}}^{\alpha}(\boldsymbol{\xi}) := \int_{I} \mathbb{E}\Big[\sum_{t \in \mathbb{N}} \beta^{t} f(u, X_{t}^{u}, \alpha_{t}^{u}, \mathbb{P}_{(X_{t}^{\mathsf{v}}, \alpha_{t}^{\mathsf{v}})}^{0}(\mathrm{d}x, \mathrm{d}\mathbf{a}) \mathrm{d}\mathbf{v})\Big] \mathrm{d}u, \quad \boldsymbol{\xi} = (\xi^{u})_{u \in I}. \quad (21)$$

The value function of the conditional non exchangeable mean field control Markov decision processes CNEMF-MDP is then defined by

$$V_{\mathsf{strong}}(\boldsymbol{\xi}) := \sup_{\alpha \in \mathcal{A}} V_{\mathsf{strong}}^{\alpha}(\boldsymbol{\xi}), \quad \boldsymbol{\xi} \in \mathcal{I}. \tag{22}$$

15 / 27

• Note that the uncountable collection of *i.i.d* random variables $(\epsilon^u)_{u \in I}$ induces some measurability issues for the formulation of the strong formulation compared to the weak formulation.

The strong formulation

Equivalence of value functions between weak and strong formulation

Proposition (Equivalence of value functions).

Let $\xi=(\xi^u)_{u\in I}$ and ξ be random variables such that $\mathbb{P}_{\xi^u}=\mathbb{P}_{\xi\mid U=u}$ for λ a.e $u\in I$. Then , we have

$$V_{\mathsf{strong}}(\boldsymbol{\xi}) = V_{\mathsf{weak}}(\boldsymbol{\xi}) = V(\mu), \quad \mu = \mathbb{P}_{(U,\boldsymbol{\xi})} = \mathbb{P}_{\boldsymbol{\xi}^u}(\mathrm{d}x)\mathrm{d}u.$$
 (23)

Proof.

ightarrow We now denote indifferently V to denote $V_{ ext{strong}}$ or $V_{ ext{weak}}$.

Contents

- Introduction
 - Context and motivations
 - Problem formulation
- igl 2 Bellman fixed point on the space $\mathcal{P}_{\lambda}(I imes\mathcal{X})$
 - Lifted MDP on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$
 - Bellman fixed point on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$
 - Equivalence with the strong formulation
- 3 Propagation of chaos from V_N towards V
 - ullet The N-agent problem as a MDP on the state space \mathcal{X}^N and action space \mathcal{A}^N
 - Convergence of value functions
 - Approximate optimal policies

The N-agent problem as a MDP on state space \mathcal{X}^N and action space A^N .

Formulation of the N-agent MDP

• State dynamics for the *N*-agent controlled systems $\mathbf{X}^N = (X_i^N)_{i \in 1, N}$

$$\begin{cases} X_0^i = x_0^i, \\ X_{t+1}^i = F_N(\frac{i}{N}, X_t^i, \alpha_t^i, \frac{1}{N} \sum_{j=1}^N \delta_{(\frac{j}{N}, X_t^j, \alpha_t^j)}, \epsilon_{t+1}^j, \epsilon_{t+1}^0), & t \in \mathbb{N}. \end{cases}$$
(24)

where $\mathbf{x}_0 := (x_0^i)_{i \in 1, N} \in \mathcal{X}^N$ is the inital vector state of the agents.

• Value function for the N agent MDP.

$$V_N^{\alpha}(\mathbf{x}_0) := \frac{1}{N} \sum_{i=1}^N \mathbb{E} \left[\sum_{t \in \mathbb{N}} \beta^t f_N\left(\frac{i}{N}, X_t^i, \alpha_t^i, \frac{1}{N} \sum_{i=1}^N \delta_{(\frac{i}{N}, X_t^i, \alpha_t^i)}\right) \right], \tag{25}$$

$$V_N(\mathbf{x}_0) := \sup_{\alpha \in A} V_N^{\alpha}(\mathbf{x}_0). \tag{26}$$

18 / 27

The *N*-agent problem as a MDP on the space \mathcal{X}^N .

MDP on the space \mathcal{X}^N .

• State dynamics (24) can be written :

$$\mathbf{X}_{t+1} = \mathbf{F}_N(\mathbf{X}_t, \boldsymbol{\alpha}_t, \boldsymbol{\epsilon}_{t+1}), \tag{27}$$

with state transition function $F_N: \mathcal{X}^N \times A^N \times (E^N \times E^0) \to \mathcal{X}^N$ is given for $\mathbf{x} = (x^i)_{i \in 1, N} = (a^i)_{i \in 1, N}$ and $\mathbf{e} = ((e^i)_{i \in 1, N}, \mathbf{e}^0)$ by

$$\boldsymbol{F}_{N}(\boldsymbol{x},\boldsymbol{a},\mathbf{e}) := \left(F_{N}(\frac{i}{N},\boldsymbol{x}^{i},\boldsymbol{a}^{i},\frac{1}{N}\sum_{i=1}^{N}\delta_{(\frac{i}{N},\boldsymbol{x}^{i},\boldsymbol{a}^{i})},\boldsymbol{e}^{i},\boldsymbol{e}^{0})\right)_{i\in 1,N},$$

• Value function (25) for the N agent MDP :

$$V_N^{\alpha}(\mathbf{x}_0) = \mathbb{E}\Big[\sum_{t \in \mathbb{N}} \beta^t f_N(\mathbf{X}_t, \alpha_t)\Big].$$
 (28)

with reward function $f_N : \mathcal{X}^N \times A^N \to \mathbb{R}$ is given by

$$f_N(x,a) := \frac{1}{N} \sum_{i=1}^N f_N(\frac{i}{N}, x^i, a^i, \frac{1}{N} \sum_{i=1}^N \delta_{(\frac{i}{N}, x^i, a^i)}), \quad x = (x^i)_{i \in 1, N}, \quad a = (a^i)_{i \in 1, N}.$$

◆□▶◆□▶◆■▶◆■▶ ■ 900

Ecole Polytechnique (CMAP) CNEMF-MDP 22 October 2025 19 / 27

the N-agent problem as a MDP on \mathcal{X}^N with control space A^N

N-agent MDP formulation

• Bellman operator for the N-agent MDP

$$[\mathcal{T}_{N}W](\mathbf{x}) := \sup_{\mathbf{a} \in \mathcal{A}^{N}} \mathbb{T}_{\mathbf{a}}^{\mathbf{a}}W(\mathbf{x}), \quad \mathbf{x} \in \mathcal{X}^{N}.$$
(29)

where

$$\mathbb{T}_{N}^{a}W(\mathbf{x}) := f_{N}(\mathbf{x}, \mathbf{a}) + \beta \mathbb{E}\Big[W\big(\mathbf{F}_{N}(\mathbf{x}, \mathbf{a}, \epsilon_{1})\big)\Big], \quad \mathbf{x} \in \mathcal{X}^{N}, \quad \mathbf{a} \in A^{N}.$$
 (30)

Ecole Polytechnique (CMAP) CNEMF-MDP 22 October 2025 20 / 27

Assumption on the regularity of the initial condition

For a given $\mathbf{x}:=(x^1,x^2,\ldots,x^N)\in\mathcal{X}^N$, we say that \mathbf{x} is regular if the following condition holds true. There exists a constant C>0 such that for any $i,j\in\{1,\ldots,N\}$,

$$d(x^{i}, x^{j}) \leqslant C \frac{|i - j|}{N}. \tag{31}$$

The set of regular x will be denoted in the following \mathcal{X}_{reg}^{N} .

The assumption (31) is crucial in the derivation of the propagation of chaos result

4□ > 4□ > 4 ≥ > 4 ≥ > ≥ 99

Regularity in the label state

Assumption on the regularity of f and F with respect to the label state

(i) Let $N \in \mathbb{N}^*$. The mapping

$$I \ni u \mapsto f(u, x, a, \mu) \in \mathbb{R},$$
 (32)

has a bounded variation on the interval $[\frac{j-1}{N},\frac{j}{N}[$ which we denoted by $V_{\frac{j-1}{N}}^{\frac{j}{N}}(f)$ (by omitting the dependance in (x,a,μ) which satisfies

$$V_{\frac{j-1}{N}}^{\frac{j}{N}}(f) \leqslant \frac{C}{N} \text{ or } \frac{C}{\sqrt{N}}, \tag{33}$$

for every $j \in \{1, ..., N\}$ and for every $(x, a, \mu) \in \mathcal{X} \times A \times \mathcal{P}(I \times \mathcal{X} \times A)$.

(ii)

$$\mathbb{E}\big[\textit{d}\big(\textit{F}(\textit{u},\textit{x},\textit{a},\mu,\epsilon_{1}^{1},e^{0}),\textit{F}(\textit{u}',\textit{x}',\textit{a}',\mu',\epsilon_{1}^{1},e^{0})\big)\big] \leqslant \textit{K}_{\textit{F}}\big(\textit{d}((\textit{u},\textit{x},\textit{a}),(\textit{u}',\textit{x}',\textit{a}')) + \mathcal{W}(\mu,\mu')\big), \quad (34)$$

for every $u, u' \in I$, $x, x' \in \mathcal{X}$, $a, a' \in A$ and $\mu, \mu' \in \mathcal{P}(I \times \mathcal{X} \times A)$, $e^0 \in E^0$.

Propagation of chaos of value functions

Theorem: Convergence of value functions and propagation of chaos

ullet For V value function on $\mathcal{P}_{\lambda}(I \times \mathcal{X})$ of the CNEMF-MDP, we set the lifted operator \widetilde{V} defined on \mathcal{X}^N by

$$\widetilde{V}(\mathbf{x}) := V(\mu_N^{\lambda}[\mathbf{u}, \mathbf{x}]), \quad \text{for } \mathbf{x} = (\mathbf{x}^i)_{i \in \{1, N\}} \in \mathcal{X}^N,$$
(35)

where $\mu_N^{\lambda}[\mathbf{u}, \mathbf{x}] := \sum_{j=1}^N \mathbb{1}_{\left[\frac{j-1}{N}, \frac{j}{N}\right[}(\mathbf{u}) \delta_{\mathbf{x} j}(\mathrm{d} \mathbf{x}) \mathrm{d} \mathbf{u} \in \mathcal{P}_{\lambda}(I \times \mathcal{X}).$

• There exists some positive constant C such that for all $\mathbf{x} := (\mathbf{x}^i)_{i \in \{1,N\}} \in \mathcal{X}^N_{\text{reg}}$, we have

$$\left|V_N(\mathbf{x}) - V(\mu_N^{\lambda}[\mathbf{u}, \mathbf{x}])\right| \underset{N \to \infty}{\longrightarrow} 0.$$
 (36)

Moreover, propagation of chaos rate of convergence takes the following form

$$|V_{N}(\mathbf{x}) - V(\mu_{N}^{\lambda}[\mathbf{u}, \mathbf{x}])| \leq C\left(\frac{M_{N}^{\gamma}}{N} + O(N^{-\frac{\gamma}{2}}) + \|f - f^{N}\|_{\infty} + \|F - F^{N}\|_{\infty}^{\gamma} + \frac{1}{N}\sum_{j=1}^{N}V_{\frac{j-1}{N}}^{\frac{j}{N}}(f)\right).$$
(37)

with $M_N := \sup_{\nu \in \mathcal{P}(I \times \mathcal{X} \times A)} \mathbb{E}\Big[\mathcal{W}(\nu_N, \nu)\Big], \quad (\nu_N \text{ empirical measure of } \nu).$

It extends the result from [1] with the additional errors:

- $O(N^{-\frac{\gamma}{2}})$ which represents the error due to the label convergence.
- $||f f_N||_{\infty}$ and $||F F_N||_{\infty}$ which represent the errors due to the convergence of the state dynamics functions and the reward functions.

Ecole Polytechnique (CMAP)

CNEMF-MDP

22 October 2025

23/27

Approximate optimal policies

Theorem: Approximate optimal policies

Let $\mathfrak{a}^*: \mathcal{P}_{\lambda}(I \times \mathcal{X}) \times I \times \mathcal{X} \times [0,1] \to A$ be an optimal randomized feedback policy for the CNEMF-MDP. Then, defining

$$\boldsymbol{\pi}_{r}^{\mathfrak{a}^{*},N}(\boldsymbol{x},\boldsymbol{u}) := \left(\mathfrak{a}^{*}(\mu_{N}^{\lambda}[\boldsymbol{u},\boldsymbol{x}],\frac{i}{N},\boldsymbol{x}^{i},\boldsymbol{u}^{i}\right)_{i \in \{1,N\}},\tag{38}$$

for $\mathbf{x}:=(x^i)_{i\in\{1,N\}}\in\mathcal{X}^N_{\mathrm{reg}}$, $\mathbf{u}=(u^i)_{i\in\{1,N\}}$. Then, the randomized feedback control $\alpha^{r,N}_t\in\mathcal{A}$ defined as

$$\alpha_t^{r,N} = \pi_r^{\mathfrak{a}^*,N}(\mathbf{X}_t, \mathbf{U}_t), \quad t \in \mathbb{N},$$
(39)

where $\left\{ \boldsymbol{U}_t = (U_t^i)_{i \in \{1,N\}}, t \in \mathbb{N} \right\}$ is a family of mutually i.i.d uniform random variables on [0,1], is an $O(M_N^\gamma + N^{-\frac{\gamma}{2}} + \|\boldsymbol{f} - \boldsymbol{f}^N\|_\infty + \|\boldsymbol{F} - \boldsymbol{F}^N\|_\infty^\gamma)$ optimal control for the *N*-agent MDP.

Conclusion

Main results of our work

Conclusion of our work

- CNEMF-MDP lifted to optimization problem on the space $\mathcal{P}_{\lambda}(I \times \mathcal{X})$ with relaxed controls valued in $\mathbf{A} = \mathcal{P}_{\lambda}(I \times \mathcal{X} \times A)$ with marginal constraint \rightarrow Standard MFC on the Wasserstein space $\mathcal{P}_{\lambda}(I \times \mathcal{X})$.
 - Characterization of the value function as a fixed point of a Bellman operator.
 - Equivalence formulation between weak and strong formulation.
 - Existence of an optimal randomized feedback control policy a*.

Conclusion

Main results of our work

Conclusion of our work

- CNEMF-MDP lifted to optimization problem on the space $\mathcal{P}_{\lambda}(I \times \mathcal{X})$ with relaxed controls valued in $\mathbf{A} = \mathcal{P}_{\lambda}(I \times \mathcal{X} \times A)$ with marginal constraint \rightarrow Standard MFC on the Wasserstein space $\mathcal{P}_{\lambda}(I \times \mathcal{X})$.
 - Characterization of the value function as a fixed point of a Bellman operator.
 - Equivalence formulation between weak and strong formulation.
 - Existence of an optimal randomized feedback control policy a^* .
- Convergence of the value function V_N of the N-agent MDP towards the value function V for initial state agents $\mathbf{x} := (\mathbf{x}^i)_{i \in \{1, \dots, N\}} \in \mathcal{X}^N_{\text{reg}}$ with explicit rate of convergence

Conclusion

Main results of our work

Conclusion of our work

- CNEMF-MDP lifted to optimization problem on the space $\mathcal{P}_{\lambda}(I \times \mathcal{X})$ with relaxed controls valued in $\mathbf{A} = \mathcal{P}_{\lambda}(I \times \mathcal{X} \times A)$ with marginal constraint \rightarrow Standard MFC on the Wasserstein space $\mathcal{P}_{\lambda}(I \times \mathcal{X})$.
 - Characterization of the value function as a fixed point of a Bellman operator.
 - Equivalence formulation between weak and strong formulation.
 - Existence of an optimal randomized feedback control policy a^* .
- Convergence of the value function V_N of the N-agent MDP towards the value function V for initial state agents $\mathbf{x} := (x^i)_{i \in \{1, \dots, N\}} \in \mathcal{X}^N_{\text{reg}}$ with explicit rate of convergence
- Optimal randomized feedback control for CNEMF-MDP → Quantitative approximate optimal policy for the N-agent MDP.

Future works on non exchangeable mean field systems

- Numerical algorithms in the context of a finite number of players :
 - (1) In a model-based setting: Learning optimal controls $\alpha = (\alpha^{1,N}, \dots, \alpha^{N,N})$ and value function V_N through Deep Learning algorithms.
 - (2) In a model-free setting: Learning optimal policies and value function V_N through Reinforcement Learning algorithms.

Future works on non exchangeable mean field systems

- Numerical algorithms in the context of a finite number of players :
 - (1) In a model-based setting : Learning optimal controls $\alpha = (\alpha^{1,N}, \dots, \alpha^{N,N})$ and value function V_N through Deep Learning algorithms.
 - (2) In a model-free setting : Learning optimal policies and value function V_N through Reinforcement Learning algorithms.
- Numerical algorithms in the context of the label state formulation
 - (1) In a model-based setting : Learning optimal control α through Deep Learning algorithm and value function V through HJB equation
 - (2) In a model-free setting : Learning optimal policy π and optimal value function ${\it V}$ through Actor-critic algorithms.

Future works on non exchangeable mean field systems

- Numerical algorithms in the context of a finite number of players :
 - (1) In a model-based setting: Learning optimal controls $\alpha = (\alpha^{1,N}, \dots, \alpha^{N,N})$ and value function V_N through Deep Learning algorithms.
 - (2) In a model-free setting : Learning optimal policies and value function V_N through Reinforcement Learning algorithms.
- Numerical algorithms in the context of the label state formulation
 - (1) In a model-based setting : Learning optimal control α through Deep Learning algorithm and value function \red{V} through HJB equation
 - (2) In a model-free setting : Learning optimal policy π and optimal value function \red{V} through Actor-critic algorithms.
- LQ control problem for non exchangeable mean field systems (with common noise).

References

M. Motte and H. Pham. Mean-field Markov decision processes with common noise and open-loop controls, The Annals of Applied Probability, 32(2):1421–1458, 2022.

M. Motte and H. Pham. *Quantitative propagation of chaos for mean field Markov decision process with common noise*. Electronic Journal of Probability, 28:1–24, 2023.

M. Motte. Mathematical models for large populations, behavioral economics, and targeted advertising. PhD thesis, Université Paris Cité, 2021.

S.Mekkaoui, H.Pham Analysis of Non-Exchangeable Mean Field Markov Decision Processes with common noise: From Bellman equation to quantitative propagation of chaos. Work in Progress

THANK YOU FOR YOUR ATTENTION