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Introduction

Mean-field approach to large population stochastic control

Mean field approach to large population stochastic control
o Large number of agents N interacting dynamic agents/entities with heterogeneous
interactions.
e Agents are cooperative and act following a social planner.
e When N — o0, we get an optimal control of mean-field type.
e Symmetric agents — McKean-Vlasov equations
o Nonsymmetric agents — New limiting systems.
e Here, we focus on

o Discrete time, and finite / continuous state space

e Infinite Horizon

[

e When N — o0 : Non exchangeable Markov Decision Process
(CNEMF-MDP).

— Mathematical framework of reinforcement learning (RL) with many interacting
cooperative agents.
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Introduction

Framework and notations

Framework and notations
o Universal filtered probability space (2, F, F,P).
e State and action spaces: X and A (compact and Polish) and / = [0, 1] encoding
heterogeneity of the agents labeled by ue /.
o P(I x X), resp P(A), resp P(I x X x A) : set of probability measures on
I x X, resp A, resp | x X x A, with Wasserstein distance.
e Discrete time transition dynamics

e |diosyncratic noises: (€f)ues, i.i.d valued in E.
e Common noise: (€2):en for all agents, i.i.d valued in E°.
o F measurable function from I x X x Ax P(I x X x A) x E x E> - X.

e Reward on infinite horizon.

e Discount factor § € [0, 1).
e f measurable bounded function from [ x X x xA x P(I x X x A) — R.
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Introduction

Context and motivations

The conditional McKean-Vlasov MDP problem

Conditional McKean-Vlasov Markov Decision Processes (CMKV-MDP) problem studied by Motte and Pham
(see [1]):

V(E) = inf V(&) = E[ T B*F(Xe, 0, Py )] 8
€ teN

where A is a suitable class of control with controlled state X = (X):en dynamics given by :

Xtojr1 = F(X, o, P[()Xt,at)7€t+l76(t)+1))
XZ =¢. (2)

where all the random variables are defined on an abstract filtered probability space (2, F, F, P).

— The control problem (1)-(2) can be lifted on the space of measures P(X) and show
that V is law invariant, ie for 2 X-valued random variables ¢ and ¢’ satisfying Pe = Py,
we have V(&) = V(¢).
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Introduction

Context and motivations

— Extend the known CMKV-MDP theory to the case of non exchangeable interactions.
Non exchangeable interactions are motivated by recent litterature on Graphons.
e Graphon mean field systems :
e Bayrakhtar, Chakraborty, Ruoyu Wu (22).
e De Crescenzo, Coppini, Pham (23).
e Graphon mean field control (in continuous time):
e Cao and Lauriére (25).
e De Crescenzo, Fuhrman, Kharroubi and Pham (24).
e Kharroubi, Mekkaoui and Pham (25).

The agents labeled by u € | interact through a weighted probability measure through
G(u,v)Pyv (dx)d
Graphons and functions of %) where G : I x I3 (u,v) — G(u,v) is a

measurable map which measures the weight between agents u and v.

Ecole Polytechnique (CMAP) CNEMF-MDP 22 October 2025 6/27



Introduction

Context and motivations
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e Bayrakhtar, Chakraborty, Ruoyu Wu (22).
e De Crescenzo, Coppini, Pham (23).
e Graphon mean field control (in continuous time):
e Cao and Lauriére (25).
e De Crescenzo, Fuhrman, Kharroubi and Pham (24).
e Kharroubi, Mekkaoui and Pham (25).

The agents labeled by u € | interact through a weighted probability measure through
G(u,v)Pyv (dx)d
Graphons and functions of %) where G : I x I3 (u,v) — G(u,v)is a

measurable map which measures the weight between agents u and v.

— We want to extend the framework of CMKV-MDP by introducing an adequate
modelling of the heterogeneity between the agents.
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Introduction
The N agent formulation in the CNEMF-MDP control problem

N-agent formulation

e State dynamics for the controlled systems XV = (X’ N),el N

iN i
)(07 = Xp,

v 1 (3)

Xt+1_FN( XM o, N teN.

i o
5 i,\',,X{’N,o/;'N>’€It+1’€‘+1)’

an

e Value function for the N-agent system:

1

N
VE(x0) = Z[Zﬁm XW;,N

teN

th} (4)

Il M=
Oq
25.
’

where xo := (x¢)ie1,n € X" is the inital vector state of the agents. We then define

Var(xa) = sup Vi (xc). (5)
acA
y
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Introduction

The non exchangeable mean field limit

Strong and weak formulation for the non exchangeable mean field limit

e Strong formulation :

XU — gu
0 ;
) 0
{Xtu+1 = F(u, Xtuﬂa:?P(X;/,n ) (dx, da)dv, €115€401)s tEN, wel

(6)
{
Viro(® = [ E[ X 070 XY, 0, Py ) (0, d2)d) A, Virong(€) i= 0P Vit (), €€ T.
teN aeA
e Weak formulation :
Xo = &,
0 0 (7)
Xey1 = F(U, X, ay, P(UTXz,a:)’ €141, 5r+1)v te N.
Vara®) = E[ 3 BF(U, Xt a6, Plux )]s Vieak(€) 1= sup Vi (6), €€ T, (8)
teN acA
where U is a uniform random variable (2, 7, F, P) encoding the heterogeneity.
.
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Introduction

Goal of this presentation
We will work under the weak formulation and show further a connection with the strong

formulation.

Objectives :

e Show how the control problem (7)- (8) called CNEMF-MDP can be recasted as a
standard mean field control problem on the space

Pa(l x X) :={peP(l x X): pry#pu = A} (9)

where pry : [ x X 3 (u,x) — pry(u,x) = u and # is the pushforward notation.
We will then characterize the value function Ve as a fixed point of a suitable
Bellman operator on Py (I x X).

v

™7 i = = e
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We will work under the and show further a connection with the

Objectives :

e Show how the control problem (7)- (8) called CNEMF-MDP can be recasted as a
standard mean field control problem on the space

Pa(l x X) :={peP(l x X): pry#pu = A} (9)

where pry : [ x X 3 (u,x) — pry(u,x) = u and # is the pushforward notation.
We will then characterize the value function Ve as a fixed point of a suitable
Bellman operator on Py (I x X).

e Show a quantitative propagation of chaos for the convergence of the value function
of the N-agent MDP Vjy defined in (5) towards Vieak and Vitrong for all
X = (x"),-E{LN} satisfying a regularity condition to be precised later and show how to
construct approximate optimal policies for the N-agent MDP from optimal
randomized feedback control of the CNEMF-MDP.

v
— = = = Ty
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Introduction

Goal of this presentation

We will work under the and show further a connection with the

Objectives :

e Show how the control problem (7)- (8) called CNEMF-MDP can be recasted as a
standard mean field control problem on the space

Pa(l x X) :={peP(l x X): pry#pu = A} 9)

where pry : [ x X 3 (u,x) — pry(u,x) = u and # is the pushforward notation.
We will then characterize the value function Ve as a fixed point of a suitable
Bellman operator on Py (I x X).

e Show a quantitative propagation of chaos for the convergence of the value function
of the N-agent MDP Vjy defined in (5) towards Vieak and Vitrong for all
X = (x"),-E{LN} satisfying a regularity condition to be precised later and show how to
construct approximate optimal policies for the N-agent MDP from optimal
randomized feedback control of the CNEMF-MDP.

e Propose a simple application of our non exchangeable mean field model to the case
of targeting advertising.

v
— = = = Ty
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Lifting the MDP on Py(/ x X)

Some regularity assumptions

Regularity assumptions on f and F

e Regularity on the state transition function F

E[d(F(u,X, a, [, 6%7 eo)v F(Ll, le a, /'le 6%7 eo))] < LF(d(X7 X/) + W(,LL, /.t/)) (10)
e Regularity on the reward function f

|f(u,x,a,p) — f(u,x',a,p1")| < Le(d(x, x") + W(p, 1')). (11)

forevery ue l, x,x' € X, ac A pu,p’ € P(I x X x A) and e° € E°.

e The Lipschitz assumption on F is made on expectation, and not pathwisely.

e The definition of the mean-field limit doesn't require any regularity assumption on
the label u.
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Lifting the MDP on Py(/ x X)

Lifting the MDP on Py (/ x X)

Definethemeasurablemapf—':I><X><A><7?(I><X><A)><ExE°—>IxXas

Fu,x,a,1,0,€%) = (u, F(u, x, 3, 1, e, €)).

e Set =P € P (I x X). Then (using the pushforward notation #):
Btt1 5%y A ) (using the p #)
- E(,.,.P° S D#(PY ®Ac) P-as (12)
P (U Xe ) S (U Xt ap) @ e =
. 0 _ N A - i
Bayes Formula gives P(nyha” = put@dét where &y is a probability kernel:
. 0
&t 1l x X 3 (u,x) — Pa:I(U,X:)=(u,X) e P(A), (13)
IS ~ 0
pey1 = F(pe, e, ep4q), tEN, (14)
with f:(ﬂ, a, eo) = .E(, o pRA, ., eo)#((ﬂ®é) ® /\6). and relaxed (P (A)-valued) feedback control & on [ X X.
e Similarly and with law of conditional expectations, we have
ve = E[ Y B'F(ue, a0, (15)

teN

for some measurable function f : Py (I x X) x L%/ x X; P(A)) — R explicitly derived from f.
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Bellman operator on the lifted MDP

Definition of the Bellman operator 7
e operator T of the lifted MDP: For W € L (Pa(l x X)),

[TW]() = sup  [T°W](w) = sup  [T°W](w),
3eL0(Ix X;P(A)) 2€L0(Ix X x [0,1];4)

where 77 and T? are operators defined on L* (Pa(l x X)) by

IN

[T2W](n) := F(n,3) + BE[W(F (1, 3,¢2))]
[Ta W](u) c

for any (¢, U) ~ p@U([0, 1]).

F
El:f(€7 a(f, U)7 ‘C(€7 3(57 U)) + ﬂW(P%(E,a(ﬁ,U),E({,a(E,U),q,eg))]’

(16)

(17)
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Characterization by Bellman equation on Py(/ x X)

Theorem

e Law invariance. For any & and ¢’ X-valued random variables s.t Py ¢y = Py,
we have Vieak(€) = Vieak(€'). We then define V(i) := Vieak(€), for
o= P(U,g) € 77)\(/ X X)
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Characterization by Bellman equation on Py(/ x X)

Theorem

e Law invariance. For any & and ¢’ X-valued random variables s.t Py ¢y = Py,
we have Vieak(€) = Vieak(€'). We then define V(i) := Vieak(€), for
B = P(U,E) € ’PA(I X X)

e Dynamic Programming. We have V..« fixed point for the operator 7:

Vweak(,u) = [vaeak] (/J), JIAS PA(I X X) (18)

o Existence of optimal randomized feedback control o™ for Ve () in the form:
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Characterization by Bellman equation on Py(/ x X)

Theorem
e Law invariance. For any & and ¢’ X-valued random variables s.t Py ¢y = Py,
we have Vieak(€) = Vieak(€'). We then define V(i) := Vieak(€), for
B = P(U’g) € ’PA(I X X)
e Dynamic Programming. We have V..« fixed point for the operator 7:
Vweak(,u) = [vaeak] (N), M E PA(I X X) (18)
o Existence of optimal randomized feedback control o™ for Ve () in the form:

af = a*(Pluxy, U, Xe, V&) (19)

where (V4)ten sequence of i.i.d uniform random variables for some measurable
function a™*(u, u,x, 1) on Pr(I x X) x | x X x [0,1].
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The strong formulation

Problem formulation

Formulation of the strong formulation

e State dynamics for the controlled systems X = (X*)ue :

Xo = ¢,
u u u 0 u 0 (20)
Xit1 = F(u, X¢', o, P(xy av)(dx,da)dv, €11, €041), tEN, wel

e Value function in the strong formulation :

s?rong(&) = LE[Zﬁtf(u> X:,ozltl,P(()X:’a\{)(dx,da)dV)]dU, 6 = (gu)uel- (21)

teN

The value function of the conditional non exchangeable mean field control Markov
decision processes CNEMF-MDP is then defined by

‘/strong(s) = sui\/s?rong(s)v é €L (22)

v

e Note that the uncountable collection of i.i.d random variables (€"),e; induces some
measurability issues for the formulation of the strong formulation compared to the
weak formulation.
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The strong formulation

Equivalence of value functions between weak and strong formulation

Proposition (Equivalence of value functions).

Let £ = (£")ues and £ be random variables such that Pew = Pgjy—, for A a.e ue /. Then,
we have

Vstrong(E) = Vweak(é-) = V(/J), on = P(Uyg) = Pgu (dX)dU (23)‘

Proof.

— We now denote indifferently V to denote Virong O Vieak-
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The N-agent problem as a MDP on state space X"V and action space AV.

Formulation of the N-agent MDP

e State dynamics for the N-agent controlled systems XV = (X);c1 v

; i X . @ (24)
Xip1 = FN(N7Xtaat7N25 1X{>(,/;):6Jr+1a5t+1): teN.
where xo := (x¢)ic1,n € X" is the inital vector state of the agents.
e Value function for the N agent MDP.
N 1N
Vi (x0) = Z | 8 (5 xf,at,NZmW )] (25)
i=1 teN j=1
Viv(xo) := sup Vi (o). (26)
acA
v
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The N-agent problem as a MDP on the space X'V.

MDP on the space X'V.

e State dynamics (24) can be written :

Xer1 = Fn(Xe, att, €141), (27)

with state transition function Fy : XN x AV x (EN x E%) — X" is given for x = (x"),-el,N, = (a"),-el)N
and e = ((&)ie1,n, €°) by

Fn(x,a,e) := (FN xa, = Z(S & ’)’e’eo));a N’

e Value function (25) for the N agent MDP :

Vil (x0) = E[ 3] B*Fn(Xe, o). (28)

teN

with reward function fy : XV x AY — R is given by

N 5
1 i i i
fu(x a) = & > fN(ﬁ, Z i i)y x=(Den,  a=(a)en.
i=1
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the N-agent problem as a MDP on X'V with control space AV

N-agent MDP formulation
e Bellman operator for the N-agent MDP

[TWW](x) == supTaW(x), xex". (29)

acAN

where

TZW(x) := fu(x, a) + 6E[W(FN(X, a, 61))], xeXV, acA'.  (30)

v
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Propagation of chaos of value functions

Regularity of the initial conditions

Assumption on the regularity of the initial condition

For a given x := (x},x?,...,x") e XN, we say that x is regular if the following condition

holds true. There exists a constant C > 0 such that for any i,j € {1,..., N},

d(x',¥) < C% (31)

The set of regular x will be denoted in the following Xr'evg.

e The assumption (31) is crucial in the derivation of the propagation of chaos result
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Propagation of chaos of value functions
Regularity in the label state

Assumption on the regularity of £ and F with respect to the label state

(i) Let N e N*. The mapping
I3u~— f(u,x,a,p) €ER, (32)

: . 4
has a bounded variation on the interval [FTl, % [ which we denoted by Vj'!_l (f) (by omitting the
W

dependance in (x, a, 1) which satisfies

Vﬁ (f) < < or < (33)
USRIV
for every j € {1,..., N} and for every (x,a,u) € X x Ax P(l x X x A).

(if)
E[d(F(u,x, a, p, a,e), F(u',x',a, i, e, eo))] < Ke(d((u, x, a), (u',x",a")) + W(n, 1)), (34)

for every u,u’ € I, x,x' € X, a,a’ € Aand p, /' € P(I x X x A),e® € E°.
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Propagation of chaos of value functions

Theorem : Convergence of value functions and propagation of chaos

e For V value function on Py (/ x X) of the CNEMF-MDP, we set the lifted operator V defined on X" by

V(x) :i= V(up[u,x]), forx = (Xf)fe{l,/v} ea" (35)
where pf[u, x] == ZJ'.VZI ﬂ[‘LNl,#'[(U)éxf(dx)du € Px(l x X).
e There exists some positive constant C such that for all x := (xi);E{l,N) € Xr':g, we have
[Vn(x) = V(un[u,x])| — o. (36)
N—xo

Moreover, propagation of chaos rate of convergence takes the following form

v
Vi) = V[ <D < € (M + 0N F) 4 11F = )l + 11F — FYI + 3, Viﬁm)‘
j=1
(37)

with My := sup E[W(VN, y)], (vn empirical measure of v).
veP (Ix X xA)

It extends the result from [1] with the additional errors:
. O(N’%) which represents the error due to the label convergence.
o ||f — fnllo and ||F — Fu||oo which represent the errors due to the convergence of the
state dynamics functions and the reward functions.
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Approximate optimal policies

Theorem : Approximate optimal policies

Let a® : Px(I x X) x [ x X x [0,1] — A be an optimal randomized feedback policy for
the CNEMF-MDP. Then, defining

* Ny ) A I 5 5
7"5 (X, U) = (a*(/“LN[u7X]7N7X ’u)ie{l,N}’ (38)
for x := (x"),-E{LN} € Xr’e\’g, u= (u"),-e{l,,\,}. Then, the randomized feedback control
oV e A defined as

afV = 7 N(X,, Uy), teN, (39)
where {U: = (U{)ic1,ny,t € N} is a family of mutually i.i.d uniform random variables on

[0,1], is an O(M,, + N=% +||f — £¥||.. + ||F — F"||2.) optimal control for the N-agent
MDP.
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Conclusion
Main results of our work

Conclusion of our work

o CNEMF-MDP lifted to optimization problem on the space Px(/ x X) with relaxed
controls valued in A = Py (/ x X x A) with marginal constraint — Standard MFC
on the Wasserstein space Py (/ x X).

e Characterization of the value function as a fixed point of a Bellman operator.
e Equivalence formulation between weak and strong formulation.
o Existence of an optimal randomized feedback control policy a*.
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o CNEMF-MDP lifted to optimization problem on the space Px(/ x X) with relaxed
controls valued in A = Py (/ x X x A) with marginal constraint — Standard MFC
on the Wasserstein space Py (/ x X).
e Characterization of the value function as a fixed point of a Bellman operator.
e Equivalence formulation between weak and strong formulation.
o Existence of an optimal randomized feedback control policy a*.
e Convergence of the value function Vi of the N-agent MDP towards the value
function V for initial state agents x := (x"),-e(ly,_,,,v} € Xrﬁ_’g with explicit rate of
convergence
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Conclusion

Main results of our work

Conclusion of our work

o CNEMF-MDP lifted to optimization problem on the space Px(/ x X) with relaxed
controls valued in A = Py (/ x X x A) with marginal constraint — Standard MFC
on the Wasserstein space Py (/ x X).

e Characterization of the as a fixed point of a Bellman operator.
e Equivalence formulation between weak and strong formulation.
o Existence of an optimal randomized feedback control policy a*.

e Convergence of the Vv of the N-agent MDP towards the value
function V for initial state agents x := (x')je(1,...,n} € Xrﬁ_’g with explicit rate of
convergence

e Optimal randomized feedback control for CNEMF-MDP — Quantitative
approximate optimal policy for the N-agent MDP.
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Conclusion
Further works on CNEMF-MDP problem

Future works on non exchangeable mean field systems

e Numerical algorithms in the context of a finite number of players :

1,1\1’” N,N)

(1) In a model-based setting : Learning optimal controls o = (« and
value function Vjy through Deep Learning algorithms.
(2) In a model-free setting : Learning optimal policies and value function Vy

through Reinforcement Learning algorithms.

L
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Conclusion
Further works on CNEMF-MDP problem

Future works on non exchangeable mean field systems
e Numerical algorithms in the context of a finite number of players :

(1) In a model-based setting : Learning optimal controls a = (o™, ..
value function Vjy through Deep Learning algorithms.

(2) In a model-free setting : Learning optimal policies and value function Vy
through Reinforcement Learning algorithms.

e Numerical algorithms in the context of the label state formulation

(1) In a model-based setting : Learning optimal control « through Deep Learning
algorithm and value function V' through HJB equation

(2) In a model-free setting : Learning optimal policy = and optimal value function
V' through Actor-critic algorithms.

NNy and

L
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Conclusion
Further works on CNEMF-MDP problem

Future works on non exchangeable mean field systems
e Numerical algorithms in the context of a finite number of players :
(1) In a model-based setting : Learning optimal controls a = (o™, ..
value function Vjy through Deep Learning algorithms.
(2) In a model-free setting : Learning optimal policies and value function Vy
through Reinforcement Learning algorithms.
e Numerical algorithms in the context of the label state formulation
(1) In a model-based setting : Learning optimal control « through Deep Learning

algorithm and value function V' through HJB equation
(2) In a model-free setting : Learning optimal policy = and optimal value function

V' through Actor-critic algorithms.
e LQ control problem for non exchangeable mean field systems (with common noise).

., ™M) and

V.
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