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Introduction
Mean-field approach to large population stochastic control

Mean field approach to large population stochastic control
‚ Large number of agents N interacting dynamic agents/entities with heterogeneous

interactions.
‚ Agents are cooperative and act following a social planner.
‚ When N Ñ 8, we get an optimal control of mean-field type.

‚ Symmetric agents Ñ McKean-Vlasov equations
‚ Nonsymmetric agents Ñ New limiting systems.

‚ Here, we focus on
‚ Discrete time, and finite / continuous state space
‚ Infinite Horizon
‚ Common noise
‚ When N Ñ 8 : Conditional Non exchangeable Markov Decision Process

(CNEMF-MDP).
Ñ Mathematical framework of reinforcement learning (RL) with many interacting
cooperative agents.
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Introduction
Framework and notations

Framework and notations
‚ Universal filtered probability space pΩ, F , F, Pq.
‚ State and action spaces: X and A (compact and Polish) and I “ r0, 1s encoding

heterogeneity of the agents labeled by u P I .
‚ PpI ˆ X q, resp PpAq, resp PpI ˆ X ˆ Aq : set of probability measures on

I ˆ X , resp A, resp I ˆ X ˆ A, with Wasserstein distance.
‚ Discrete time transition dynamics

‚ Idiosyncratic noises: pϵu
t quPI , i.i.d valued in E .

‚ Common noise: pϵ0
t qtPN for all agents, i.i.d valued in E 0.

‚ F measurable function from I ˆ X ˆ A ˆ PpI ˆ X ˆ Aq ˆ E ˆ E 0
Ñ X .

‚ Reward on infinite horizon.
‚ Discount factor β P r0, 1q.
‚ f measurable bounded function from I ˆ X ˆ ˆA ˆ PpI ˆ X ˆ Aq Ñ R.
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Introduction
Context and motivations

The conditional McKean-Vlasov MDP problem
Conditional McKean-Vlasov Markov Decision Processes (CMKV-MDP) problem studied by Motte and Pham
(see [1]):

V pξq “ inf
αPA

V α
pξq :“ E

”

ÿ

tPN

β
t f pXt , αt , P0

pXt ,αt qq

ı

, (1)

where A is a suitable class of control with controlled state Xα
“ pXα

t qtPN dynamics given by :

Xα
t`1 “ FpXt , αt , P0

pXt ,αt q, ϵt`1, ϵ
0
t`1q,

Xα
0 “ ξ. (2)

where all the random variables are defined on an abstract filtered probability space pΩ, F, F, Pq.

Ñ The control problem (1)-(2) can be lifted on the space of measures PpX q and show
that V is law invariant, ie for 2 X -valued random variables ξ and ξ1 satisfying Pξ “ Pξ1 ,
we have V pξq “ V pξ1

q.
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Introduction
Context and motivations

Ñ Extend the known CMKV-MDP theory to the case of non exchangeable interactions.
Non exchangeable interactions are motivated by recent litterature on Graphons.

‚ Graphon mean field systems :
‚ Bayrakhtar, Chakraborty, Ruoyu Wu (22).
‚ De Crescenzo, Coppini, Pham (23).

‚ Graphon mean field control (in continuous time):
‚ Cao and Laurière (25).
‚ De Crescenzo, Fuhrman, Kharroubi and Pham (24).
‚ Kharroubi, Mekkaoui and Pham (25).

The agents labeled by u P I interact through a weighted probability measure through
Graphons and functions of

ş

I Gpu,vqPXv
t

pdxqdv
ş

I Gpu,vqdv q where G : I ˆ I Q pu, vq ÞÑ Gpu, vq is a
measurable map which measures the weight between agents u and v .

Ñ We want to extend the framework of CMKV-MDP by introducing an adequate
modelling of the heterogeneity between the agents.
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Introduction
The N agent formulation in the CNEMF-MDP control problem

N-agent formulation
‚ State dynamics for the controlled systems XN

“ pX i,N
qiP1,N

$

’

’

&

’

’

%

X i,N
0 “ x i

0,

X i,N
t`1 “ FNp

i
N , X i,N

t , αi,N
t ,

1
N

N
ÿ

j“1

δ
p

j
N ,X j,N

t ,α
j,N
t q

, ϵj
t`1, ϵ0

t`1q, t P N.
(3)

‚ Value function for the N-agent system:

V α
N px0q :“ 1

N

N
ÿ

i“1

E
”

ÿ

tPN

βt fN
` i

N , X i,N
t , αi,N

t ,
1
N

N
ÿ

j“1

δ
p

j
N ,X j,N

t ,α
j,N
t q

˘

ı

, (4)

where x0 :“ px i
0qiP1,N P X N is the inital vector state of the agents. We then define

VNpx0q :“ sup
αPA

V α
N px0q. (5)
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Introduction
The non exchangeable mean field limit

Strong and weak formulation for the non exchangeable mean field limit
‚ Strong formulation :

$

&

%

Xu
0 “ ξ

u
,

Xu
t`1 “ Fpu, Xu

t , α
u
t , P0

pXv
t ,αv

t qpdx , daqdv , ϵ
u
t`1, ϵ

0
t`1q, t P N, u P I.

(6)

V α
strongpξq :“

ż

I
E
”

ÿ

tPN

β
t f pu, Xu

t , α
u
t , P0

pXv
t ,αv

t qpdx , daqdvq

ı

du, Vstrongpξq :“ sup
αPA

V α
strongpξq, ξ P I.

‚ Weak formulation :

#

X0 “ ξ,

Xt`1 “ FpU, Xt , αt , P0
pU,Xt ,αt q, ϵt`1, ϵ

0
t`1q, t P N.

(7)

V α
weakpξq :“ E

”

ÿ

tPN

β
t f pU, Xt , αt , P0

pU,Xt ,αt qq

ı

, Vweakpξq :“ sup
αPA

V α
weakpξq, ξ P I. (8)

where U is a uniform random variable pΩ, F, F, Pq encoding the heterogeneity.
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Introduction
Goal of this presentation

We will work under the weak formulation and show further a connection with the strong
formulation.

Objectives :
‚ Show how the control problem (7)- (8) called CNEMF-MDP can be recasted as a

standard mean field control problem on the space

PλpI ˆ X q :“
␣

µ P PpI ˆ X q : pr1#µ “ λ
(

(9)

where pr1 : I ˆ X Q pu, xq ÞÑ pr1pu, xq “ u and # is the pushforward notation.
We will then characterize the value function Vweak as a fixed point of a suitable
Bellman operator on PλpI ˆ X q.

‚ Show a quantitative propagation of chaos for the convergence of the value function
of the N-agent MDP VN defined in (5) towards Vweak and Vstrong for all
x :“ px i

qiPt1,Nu satisfying a regularity condition to be precised later and show how to
construct approximate optimal policies for the N-agent MDP from optimal
randomized feedback control of the CNEMF-MDP.

‚ Propose a simple application of our non exchangeable mean field model to the case
of targeting advertising.
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Lifting the MDP on PλpI ˆ X q
Some regularity assumptions

Regularity assumptions on f and F
‚ Regularity on the state transition function F

E
“

d
`

F pu,x , a, µ, ϵ1
1, e0

q, F pu, x 1, a, µ1, ϵ1
1, e0

q
˘‰

ď LF
`

dpx , x 1
q ` Wpµ, µ1

q
˘

. (10)

‚ Regularity on the reward function f
ˇ

ˇf pu, x , a, µq ´ f pu, x 1, a, µ1
q
ˇ

ˇ ď Lf
`

dpx , x 1
q ` Wpµ, µ1

q
˘

. (11)

for every u P I, x , x 1
P X , a P A, µ, µ1

P PpI ˆ X ˆ Aq and e0
P E 0.

‚ The Lipschitz assumption on F is made on expectation, and not pathwisely.
‚ The definition of the mean-field limit doesn’t require any regularity assumption on

the label u.
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Lifting the MDP on PλpI ˆ X q

Lifting the MDP on PλpI ˆ X q

Define the measurable map F̃ : I ˆ X ˆ A ˆ PpI ˆ X ˆ Aq ˆ E ˆ E0 Ñ I ˆ X as

F̃pu, x, a, µ, e, e0
q “

`

u, Fpu, x, a, µ, e, e0
q
˘

.

‚ Set µt`1 “ P0
pU,Xt`1q

P PλpI ˆ X q. Then (using the pushforward notation #):

µt`1 “ F̃p., ., .P0
pU,Xt ,αt q, ϵ

0
t`1q#

`

P0
pU,Xt ,αt q b λϵ

˘

P-a.s, (12)

Bayes Formula gives P0
pU,Xt ,αt q

“ µt b̂α̂t where α̂t is a probability kernel:

α̂t : I ˆ X Q pu, xq ÞÑ P0
αt |pU,Xt q“pu,xq P PpAq, (13)

µt`1 “ F̂
`

µt , α̂t , ϵ
0
t`1

˘

, t P N, (14)

with F̂pµ̂, â, e0q :“ F̃
`

., ., ., µ̂b̂â, ., e0˘#
`

pµ̂b̂âq b λϵ
˘

. and relaxed (PpAq-valued) feedback control α̂ on I ˆ X .
‚ Similarly and with law of conditional expectations, we have

V α
“ E

”

ÿ

tPN

β
t f̂ pµt , α̂t q

ı

, (15)

for some measurable function f̂ : PλpI ˆ X q ˆ L0pI ˆ X ; PpAqq Ñ R explicitly derived from f .
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Bellman operator on the lifted MDP

Definition of the Bellman operator T
‚ operator T of the lifted MDP: For W P L8

m pPλpI ˆ X qq,

“

T W
‰

pµq “ sup
âPL0pIˆX ;PpAqq

“

T̂ âW spµq “ sup
aPL0pIˆX ˆr0,1s;Aq

“

TaW
‰

pµq, (16)

where T̂ â and Ta are operators defined on L8
`

PλpI ˆ X q
˘

by

“

T̂ âW spµq :“ f̂ pµ, âq ` βE
“

W pF̂ pµ, â, ϵ0
1qq

‰

“

TaW
‰

pµq :“ E
”

f pξ, apξ, Uq, L
`

ξ, apξ, Uq
˘

` βW
`

P0
F̃pξ,apξ,Uq,Lpξ,apξ,Uq,ϵ1,ϵ0

1q

˘

ı

,

(17)

for any pξ, Uq „ µ b Upr0, 1sq.
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Characterization by Bellman equation on PλpI ˆ X q

Theorem
‚ Law invariance. For any ξ and ξ1 X -valued random variables s.t PpU,ξq “ PpU,ξ1q,

we have Vweakpξq “ Vweakpξ1
q. We then define V pµq :“ Vweakpξq, for

µ “ PpU,ξq P PλpI ˆ X q.

‚ Dynamic Programming. We have Vweak fixed point for the operator T :

Vweakpµq “
“

T Vweak
‰

pµq, µ P PλpI ˆ X q (18)

‚ Existence of optimal randomized feedback control α˚ for Vweakpξq in the form:

α˚
t “ a˚

pP0
pU,Xt q, U, Xt , Vtq (19)

where pVtqtPN sequence of i .i .d uniform random variables for some measurable
function a˚

pµ, u, x , ũq on PλpI ˆ X q ˆ I ˆ X ˆ r0, 1s.
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The strong formulation
Problem formulation

Formulation of the strong formulation
‚ State dynamics for the controlled systems X “ pX u

quPI :
#

X u
0 “ ξu,

X u
t`1 “ F pu, X u

t , αu
t , P0

pXv
t ,αv

t qpdx , daqdv , ϵu
t`1, ϵ0

t`1q, t P N, u P I.
(20)

‚ Value function in the strong formulation :

V α
strongpξq :“

ż

I
E
”

ÿ

tPN

βt f pu, X u
t , αu

t , P0
pXv

t ,αv
t qpdx , daqdvq

ı

du, ξ “ pξu
quPI . (21)

The value function of the conditional non exchangeable mean field control Markov
decision processes CNEMF-MDP is then defined by

Vstrongpξq :“ sup
αPA

V α
strongpξq, ξ P I. (22)

‚ Note that the uncountable collection of i .i .d random variables pϵu
quPI induces some

measurability issues for the formulation of the strong formulation compared to the
weak formulation.
Ecole Polytechnique (CMAP) CNEMF-MDP 22 October 2025 15 / 27
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The strong formulation
Equivalence of value functions between weak and strong formulation

Proposition (Equivalence of value functions).
Let ξ “ pξu

quPI and ξ be random variables such that Pξu “ Pξ|U“u for λ a.e u P I. Then ,
we have

Vstrongpξq “ Vweakpξq “ V pµq, µ “ PpU,ξq “ Pξu pdxqdu. (23)

Proof.

Ñ We now denote indifferently V to denote Vstrong or Vweak.
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The N-agent problem as a MDP on state space X N and action space AN .

Formulation of the N-agent MDP
‚ State dynamics for the N-agent controlled systems XN

“ pX N
i qiP1,N

$

’

’

&

’

’

%

X i
0 “ x i

0,

X i
t`1 “ FNp

i
N , X i

t , αi
t ,

1
N

N
ÿ

j“1

δ
p

j
N ,X j

t ,α
j
t q

, ϵj
t`1, ϵ0

t`1q, t P N.
(24)

where x0 :“ px i
0qiP1,N P X N is the inital vector state of the agents.

‚ Value function for the N agent MDP.

V α
N px0q :“ 1

N

N
ÿ

i“1

E
”

ÿ

tPN

βt fN
` i

N , X i
t , αi

t ,
1
N

N
ÿ

j“1

δ
p

j
N ,X j

t ,α
j
t q

˘

ı

, (25)

VNpx0q :“ sup
αPA

V α
N px0q. (26)
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The N-agent problem as a MDP on the space X N .

MDP on the space X N .
‚ State dynamics (24) can be written :

Xt`1 “ F N pXt , αt , ϵt`1q, (27)

with state transition function F N : X N
ˆ AN

ˆ pEN
ˆ E 0

q Ñ X N is given for x “ px i
qiP1,N , “ pai

qiP1,N
and e “

`

pei
qiP1,N , e0

q by

F N px, a, eq :“
´

FN p
i
N

, x i
, ai

,
1
N

N
ÿ

i“1

δ
p i

N ,xi ,ai q
, ei

, e0
q

¯

iP1,N
,

‚ Value function (25) for the N agent MDP :

V α
N px0q “ E

”

ÿ

tPN

β
t f N pXt , αt q

ı

. (28)

with reward function f N : X N
ˆ AN

Ñ R is given by

f N px, aq :“
1
N

N
ÿ

i“1

fN
` i

N
, x i

, ai
,

1
N

N
ÿ

i“1

δ
p i

N ,xi ,ai q

˘

, x “ px i
qiP1,N , a “ pai

qiP1,N .
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the N-agent problem as a MDP on X N with control space AN

N-agent MDP formulation
‚ Bellman operator for the N-agent MDP

“

TNW
‰

pxq :“ sup
aPAN

Ta
NW pxq, x P X N . (29)

where

Ta
NW pxq :“ fNpx, aq ` βE

”

W
`

F Npx, a, ϵ1q
˘

ı

, x P X N , a P AN . (30)
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Propagation of chaos of value functions
Regularity of the initial conditions

Assumption on the regularity of the initial condition
For a given x :“ px1, x2, . . . , xN

q P X N , we say that x is regular if the following condition
holds true. There exists a constant C ą 0 such that for any i , j P t1, . . . , Nu,

dpx i , x j
q ď C |i ´ j|

N . (31)

The set of regular x will be denoted in the following X N
reg.

‚ The assumption (31) is crucial in the derivation of the propagation of chaos result
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Propagation of chaos of value functions
Regularity in the label state

Assumption on the regularity of f and F with respect to the label state
(i) Let N P N˚. The mapping

I Q u ÞÑ f pu, x , a, µq P R, (32)

has a bounded variation on the interval r
j´1
N , j

N r which we denoted by V
j
N
j´1
N

pf q (by omitting the

dependance in px , a, µ) which satisfies

V
j
N
j´1
N

pf q ď
C
N

or
C

?
N

, (33)

for every j P t1, . . . , Nu and for every px , a, µq P X ˆ A ˆ PpI ˆ X ˆ Aq.
(ii)

E
“

d
`

Fpu, x , a, µ, ϵ
1
1, e0

q, Fpu1
, x 1

, a1
, µ

1
, ϵ

1
1, e0

q
˘‰

ď KF
`

dppu, x , aq, pu1
, x 1

, a1
qq ` Wpµ, µ

1
q
˘

, (34)

for every u, u1
P I, x , x 1

P X , a, a1
P A and µ, µ1

P PpI ˆ X ˆ Aq, e0
P E 0.
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Propagation of chaos of value functions

Theorem : Convergence of value functions and propagation of chaos
‚ For V value function on PλpI ˆ X q of the CNEMF-MDP, we set the lifted operator rV defined on X N by

rV pxq :“ V pµ
λ
N ru, xsq, for x “ px i

qiPt1,Nu P X N
, (35)

where µλ
N ru, xs :“

řN
j“1 1r

j´1
N ,

j
N r

puqδxj pdxqdu P PλpI ˆ X q.

‚ There exists some positive constant C such that for all x :“ px i
qiPt1,Nu P X N

reg, we have
ˇ

ˇVN pxq ´ V pµ
λ
N
“

u, x
‰

q
ˇ

ˇ Ñ
NÑ8

0. (36)

Moreover, propagation of chaos rate of convergence takes the following form

ˇ

ˇVN pxq ´ V pµ
λ
N
“

u, x
‰

q
ˇ

ˇ ď C
´

MN
γ

` OpN´
γ
2 q ` ∥f ´ f N ∥8 ` ∥F ´ F N ∥γ

8 `
1
N

N
ÿ

j“1

V
j
N
j´1
N

pf q

¯

.

(37)

with MN :“ sup
νPPpIˆX ˆAq

E
”

WpνN , νq

ı

, (νN empirical measure of ν).

It extends the result from [1] with the additional errors:
‚ OpN´

γ
2 q which represents the error due to the label convergence.

‚ ∥f ´ fN∥8 and ∥F ´ FN∥8 which represent the errors due to the convergence of the
state dynamics functions and the reward functions.
Ecole Polytechnique (CMAP) CNEMF-MDP 22 October 2025 23 / 27



Dr
af

t

Approximate optimal policies

Theorem : Approximate optimal policies
Let a˚ : PλpI ˆ X q ˆ I ˆ X ˆ r0, 1s Ñ A be an optimal randomized feedback policy for
the CNEMF-MDP. Then, defining

πa˚,N
r px, uq :“

`

a˚
pµλ

Nru, xs,
i
N , x i , ui˘

iPt1,Nu
, (38)

for x :“ px i
qiPt1,Nu P X N

reg, u “ pui
qiPt1,Nu. Then, the randomized feedback control

αr,,N
t P A defined as

αr,N
t “ πa˚,N

r pXt , Utq, t P N, (39)

where
␣

Ut “ pU i
t qiPt1,Nu, t P N

(

is a family of mutually i.i.d uniform random variables on
r0, 1s, is an OpMγ

N ` N´
γ
2 ` ∥f ´ f N∥8 ` ∥F ´ F N∥γ

8q optimal control for the N-agent
MDP.
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Conclusion
Main results of our work

Conclusion of our work
‚ CNEMF-MDP lifted to optimization problem on the space PλpI ˆ X q with relaxed

controls valued in A “ PλpI ˆ X ˆ Aq with marginal constraint Ñ Standard MFC
on the Wasserstein space PλpI ˆ X q.

‚ Characterization of the value function as a fixed point of a Bellman operator.
‚ Equivalence formulation between weak and strong formulation.
‚ Existence of an optimal randomized feedback control policy a˚.

‚ Convergence of the value function VN of the N-agent MDP towards the value
function V for initial state agents x :“ px i

qiPt1,...,Nu P X N
reg with explicit rate of

convergence
‚ Optimal randomized feedback control for CNEMF-MDP Ñ Quantitative

approximate optimal policy for the N-agent MDP.
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Conclusion
Further works on CNEMF-MDP problem

Future works on non exchangeable mean field systems
‚ Numerical algorithms in the context of a finite number of players :

p1q In a model-based setting : Learning optimal controls α “ pα1,N , . . . , αN,N
q and

value function VN through Deep Learning algorithms.
p2q In a model-free setting : Learning optimal policies and value function VN

through Reinforcement Learning algorithms.

‚ Numerical algorithms in the context of the label state formulation
p1q In a model-based setting : Learning optimal control α through Deep Learning

algorithm and value function V through HJB equation
p2q In a model-free setting : Learning optimal policy π and optimal value function

V through Actor-critic algorithms.
‚ LQ control problem for non exchangeable mean field systems (with common noise).
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